GPS测量的主要误差来源及其影响(精)

第五章

GPS卫星定位系统误差来源及影响

第五章GPS卫星定位系统误差来源及影响了解卫星星历误差,卫星钟差及相对论效应。理解接收机钟误差,相位中心位臵误差的产生与消减方法。掌握电离层折射误差、对流层折射误差、多路径误差的产生与消减方法。

第五章GPS卫星定位系统误差来源及影响第一节GPS定位的误差概述 第二节与卫星有关的误差 第三节卫星信号传播误差 第四节接收设备误差

第五节卫星几何图形强度3 第一节GPS定位的误差概述4 第二节与卫星有关的误差

一、卫星星历误差二、卫星钟差 三、相对论效应 GPS卫星的发射

第二节与卫星有关的误差 一、卫星星历误差 1.星历来源

2.星历误差对定位的影响 3.减弱星历误差影响的途径 GPS卫星工作星座

第二节与卫星有关的误差 1.星历来源 卫星星历误差

某一瞬间的卫星位臵,是由卫星星历提供的,卫星星历误差就是卫星位臵的确定误差。

星历误差来源

其大小主要取决于卫星跟踪站的数量及空间分布、观测值的数量及精度、轨道计算时所用的轨道模型及定轨软件的完善程度。 第二节与卫星有关的误差 1.星历来源 星历

(1)广播星历

(2)实测星历广播星历根据美国GPS控制中心跟踪站的观测数据进行外推,通过GPS卫星发播的一种预报星历。

实测星历根据实测资料进行拟合处理而直接得出的星历。

7

第二节与卫星有关的误差

2.星历误差对定位的影响单点定位

星历误差的径向分量作为等价测距误差进入平差计算,配赋到星站坐标和接收机钟差改正数中去,具体配赋方式则与卫星的几何图形有关。 8

第二节与卫星有关的误差 2.星历误差对定位的影响 相对定位

利用两站的同步观测资料进行相对定位时,由于星历误差对两站的影响具有很强的相关性,所以在求坐标差时,共同的影响可自行消去,从而获得高精度的相对坐标。

第二节与卫星有关的误差 2.星历误差对定位的影响

根据一次观测的结果,可以导出星历误差对定位影响的估算式为:

——基线长;

db ——卫星星历误差所引起的基线误差;p ——卫星至测站的距离;ds ——星历误差;

ds

——卫星星历的相对误差。 第二节与卫星有关的误差 3.减弱星历误差影响的途径

(1)建立自己的GPS卫星跟踪网独立定轨 (2)相对定位 (3)轨道松弛法 9

第二节与卫星有关的误差

二、卫星钟的钟误差卫星钟采用的是GPS 时,但尽管GPS卫星均设有高精度的原子钟(铷钟和铯钟),它们与理想的GPS时之间仍存在着难以避免的频率偏差或频率漂移,也包含钟的随机误差。这些偏差总量在1ms以内,由此引起的等效距离可达300km。

11

第二节与卫星有关的误差

二、卫星钟的钟误差卫星钟差的改正

卫星钟差可通过下式得到改正:

11

第二节与卫星有关的误差经上述钟差改正后,各卫星钟之间的同步差可保持在20ns以内,由此引起的等效距离偏差不超过6m。卫星钟差或经改正后的残差,在相对定位中可通过差分法在一次求差中得到消除。 第二节与卫星有关的误差

三、相对论效应相对论效应是由于卫星钟和接收机钟所处的状态不同而引起的卫星钟和接收机钟之间产生相对钟差的现象。

狭义相对论观点——一个频率为f0的振荡器安装飞行速度为v的载体上,由于载体的运动,对地面观测者来说将产生频率变化。

12

第二节三、相对论效应

广义相对论观点——处于不同等位面的振荡器,其频率将由于引力位不同而发生变化。相对论效应的影响并非常数,经改正后仍有残差,它对GPS时的影响最大可达70ns,对精密定位仍不可忽略。 第三节卫星信号传播误差

一、电离层折射二、对流层折射三、多路径误差 13

第三节卫星信号传播误差

一、电离层折射 1.电离层及其影响

电离层——地球上空大气圈的上层,距离地面高度在50~1000km之间的大气层。 当GPS信号通过电离层时,信号的传播路径会发生弯曲,使其传播速度发生变化,由此产生的距离差对测量的精度影响较大,必须采取有效措施削弱其影响。 15

第三节卫星信号传播误差 1.电离层及其影响

应该明确,电离层中的相对折射率与群折射率是不同的。码相位测量和载波相位测量应分别采用群折射率和相折射率。所以,载波相位测量时的电离层折射改正数和伪距测量时的改正数是不同的,两者大小相等,符号相反。 第三节卫星信号传播误差

2、减弱电离层影响的有效措施

(1)相对定位:利用两台或多台接收机对同一组卫星的同步观测值求差时可以有效地减弱电离层折射的影响,即使不对电离层折射进行改正,对基线成果的影响一般也不

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4