② 说出 5 个 8 的倍数。
③ 26 的最小因数是几?最大因数是几?最小的倍数是几? 2、按要求在集合圈里填上数。 二、 学习新课: (一)2 的倍数的特征。
1、教师:(练习 2) 右边集合圈里的数与左边圈里的数是什么关系? 教师:请观察右边圈里的数,它们的个位数有什么特点? ( 个位上是 0,2,4,6,8。)
教师:请再举出几个2的倍数,看看符不符合这个特点? 学生随口举例。
教师:谁能说一说是2的倍数的数的特征?
学生口答后老师板书:个位上是 0,2,4,6,8的数,都是2的倍数。 2、口答练习:(投影片)请把下面的数按要求填在圈内(是2的倍数,不是2的倍数)
1,3,4,11,14,20,23,24,28,31,401,826,740,1000,6431。 学生口答完后,老师介绍:奇数和偶数的定义
板书:上面两个集合圈上补写出 “ 偶数 ”,“ 奇数 ”。 教师:上面两个集合圈里该不该打省略号?为什么? 学生讨论后老师说明:
在本题所列的有限个数里,奇数、偶数都是有限的,但是自然数是无限的,奇数、偶数也是无限的,所以集合圈里要写上省略号。
教师:奇数、偶数在我们日常生活中你遇到过吗?习惯上称它们为什么数? (单数、双数。)
3、练习:( 先分小组小说,再全班统一回答。) ① 说出5个2的倍数。(要求:两位数。) ② 说出3个不是2的倍数的三位数。 ③ 说出 15 ~ 35 以内的偶数。
④ 50以内的偶数有多少个?奇数有多少个? (二)5 的倍数的特征。
1、教师先在黑板上画出两个集合圈,然后提出要求:你们能不能用与研究2的倍数的特征的相同方法,找出 5 的倍数的特征?
学生自己动手填数、观察、讨论。老师巡视过程中选一位同学板书填空。 教师:说一说5的倍数的特征? 教师:请举几个多位数验证。
教师:再说一说什么样的数是5的倍数。 板书:个位上是0或者5的数,都是5的倍数。 2、练习:
① 按从小到大的顺序,说出50以内5的倍数。 ② (投影片)下面哪些数是5的倍数?
240,345,431,490,545,543,709,725,815,922,986,990。 ③(投影片)从下面的数中挑出既是2的倍数,又是5的倍数的数。这些数有什么特点?
12,25,40,80,275,320,694,720,886,3100,3125,3004。 学生口答后教师板书:个位数字是 0 。
④ 教师随口说出数,请立即说出这个数是2的倍数还是5的倍数,或者同时是2和5的倍数,并说明判断的依据。 三、巩固反馈:
1 、在1~100的自然数中,2的倍数有( )个,5的倍数数有( )个。
2 、比75小,比50大的奇数有( )。 3 、个位是( )的数同时是2和5的倍数。 4 、用 0 , 7 , 4 , 5 , 9 五个数字组2 的倍数;5的倍数;同时是 2 和 5 的倍数的数。 四、全课总结:这节课你学会了什么?有什么收获?
第三课时:3的倍数的特征
教学目标:
1、经历在100以内的自然数表中找3的倍数的活动,在活动的基础上感悟3的倍数的特征,并尝试用自己的语言总结特征。
2、在探索活动中,感受数学的奥妙;在运用规律中,体验数学的价值。 教学重、难点:是3的倍数的数的特征。 教学过程:
一、提出课题,寻找3的特征。
师:同学们,我们已经知道了2、5的倍数的特征,那么3的倍数会有什么特征呢?谁能猜测一下?
生1:个位上是3、6、9的数是3的倍数。
生2:不对,个位上是3、6、9的数不定是3的倍数,如l 3、l 6、19都不是3的倍数。
生3:另外,像60、12、24、27、18等数个位上不是3、6、9,但这些数都是3的倍数。
师:看来只观察个位不能确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们共同来研究。(揭示课题)
师:先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,学生人手一张。在学生的活动后,教师组织学生进行交流,并呈现学生已圈出3的倍数的百以内的数表。)(如下图) 二、自主探索,总结3的特征师:
先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,学生利用p18的表。在学生的活动后,教师组织学生进行交流,并呈现学生已圈出3的倍数的百以内的数表。)(如下图)
师:请观察这个表格,你发现3的倍数什么特征呢?把你的发现与同桌交流一下。 学生同桌交流后,再组织全班交流。
生1:我发现10以内的数只有3、6、9是3的倍数。
生2:我发现不管横的看或竖的看,3的倍数都是隔两个数出现一次。 生3:我全部看了一下,刚才前面这位同学的猜想是不对的,3的倍数个位上0~9这十个数字都有可能。
师:个位上的数字没有什么规律,那么十位上的数有规律吗? 生:也没有规律,1~9这些数字都出现了。 师:其他同学还有什么发现吗?
生:我发现3的倍数按一条一条斜线排列很有规律。
师:你观察的角度与其他同学不同,那么每条斜线上的数有规律吗? 生:从上往下观察,连续两数都是十位数增加1,而个位数减少1。 师:十位数加1、个位数减1组成的数与原来的数有什么相同的地方? 生:我发现“3”的那条斜线,另外两个数12和21的十位和个位上的数字加起来都等于3。
师:这是一个重大发现,其他斜线呢?
生1:我发现“6”的那条斜线上的数,两个数字加起来的和都等于6。 生2:“9”的那条斜线上的数,两个数字加起来的和都等于9。
生3:我发现另外几列,除了边上的30、60、90两个数字的和是3、6、9,另外的数两个数字的和是12、15、18。
师:现在谁能归纳一下3的倍数有什么特征呢?
生:一个数各个数位上数字之和等于3、6、9、12、15、18等,这个数就一定是3的倍数。
师:实际上3、6、9、12、15、18等数都是3的倍数,所以这句还可以怎么说呢? 生:一个数各个数位上数字之和是3的倍数,这个数就一定是3的倍数。 师:刚才是从100以内数中发现了规律,得出了3的倍数的特征,如果是三位数甚至更大的数,3的倍数的特征是否也相同呢?请大家再找几个数来验证一下。 学生先自己写数并验证,然后小组交流,得出了同样的结论。 全班齐读书上的结论。 三、巩固练习: 完成p19做一做