热管设计说明

热管换热器设计说明书

一、热管及热管换热器的概述

热管是一种具有极高导热性能的新型传热元件,它通过在全封闭真空管内的液体的蒸发与凝结来传递热量,它利用毛吸作用等流体原理,起到良好的制冷效果。具有极高的导热性、良好的等温性、冷热两侧的传热面积可任意改变、可远距离传热、温度可控制等特点。将热管散热器的基板与晶闸管等大功率电力电子器件的管芯紧密接触,可直接将管芯的热量快速导出。

热管传热技术于六十年代初期由美国的科学家发明[1],它是利用封闭工作腔内工质的相变循环进行热量传输,因而具有传输热量大及传输效率高等特点。随着热管制造成本的降低,尤其是九十年代前后随着水碳钢热管相容性问题的解决,热管凭借其巨大的传热能力,被广泛应用于石油、化工、食品、造纸、冶金等领域的余热回收系统中。热管气-气换热器是最能体现热管优越性的热管换热器产品,它正在逐步取代传统的管壳式换热器。热管气-气换热器是目前应用最广泛的一种气-气换热器。

我国的能源短缺问题日趋严重,节能已被提到了重要的议事日程。大量的工业锅炉和各种窑炉、加热炉所排放的高温烟气,用热管气-气换热器进行余热回收,所得到的高温空气可用于助燃或干燥,因此应用前景非常广阔。据有关报道称,我国三分之二的能源被锅炉吞噬,而我国工业锅炉的实际运行效率只有65%左右,工业发达国家的燃煤工业锅炉运行热效率达85%,因此,提高工业锅炉的热效率,节能潜力十分巨大。如果我国锅炉的热效率能够提高10%,节约的能耗则相当于三峡水库一年的发电量,做好工业锅炉及窑炉的节能工作对节约能源具有十分重要的意义[2~6]。

利用热管气-气换热器代替传统的管壳式气-气换热器,一方面,能够大大提高预热空气进入炉内的温度,降低烟气温度,从而大大提高锅炉的热效率;另一方面,热管气-气换热器运行压降非常小,有时甚至不需要增加引风机等设备,从而使得运行费用大大降低。 1.1 热管及其应用

热管是一种具有极高导热性能的传热元件,它通过在全封闭真空管内工质的蒸发与凝结来传递热量,具有极高的导热性、良好的等温性、冷热两侧的传热面积可任意改变、可远距离传热、可控制温度等一系列优点。由热管组成的换热器具有传热效率高、结构紧凑、流体压降小等优点。由于其特殊的传热特性可控制管壁温度,避免露点腐蚀。目前已广泛应用于冶金、化工、炼油、锅炉、陶瓷、交通、轻纺、机械等行业中进行余热回收以及综合利用工艺过程中的热能,已取得了显著的经济效益[7]。 重力热管因其简单的结构及经济的成本得到了广泛的应用,其工作原理是:热管受热侧吸收废气热量,并将热量传给管内工质(液态),工质吸热后以蒸发与沸腾的形式转变为蒸汽,蒸汽在压差作用下上升至放热侧,同时凝结成液体放出汽化潜热,热量传给放热侧的冷流体,冷凝液体依靠重力回流到受热侧。由于热管内部抽成真空,所以工质极易蒸发与沸腾,热管起动迅速。热管在冷、热两侧均可装设翅片,以强化传热。 1.1.1热管的工作原理

热管工作的主要任务是从加热段吸收热量,通过内部相变传热过程,把热量输送到冷却段,从而实现热量转移。完成这一转移有6个同时发生而又相互关联的主要过程,如图1.1。这6个过程是:

(1)热量从热源通过热管管壁和充满工作液体的吸液芯传递到液-汽分界面;(2)液体在蒸发段内的液-汽分界面上蒸发;(3)蒸汽腔内的蒸汽从蒸发段流到冷凝段;(4)蒸汽在冷凝段内的汽-液分界面上凝结;(5)热量从汽-液分界面通过吸液芯、液体和管壁传给冷源; (6)在吸液芯内由于毛细作用使冷凝后的工作液体回流到蒸发段。为进一步了解热管的传热机理,将以上6个过程详述如下:

从热源到蒸发段内液—汽分界面的传热过程基本上是热传导过程。对于水或酒精这类低导热系数的工作液体来说,由于吸液芯(金属网)的导热系数比液体高,因此通过吸液芯和液体时,热能差不多主要靠多孔吸液芯材料进行传导。但是,如果工作液体是具有高导热系数的液态金属,此时热量既通过吸液芯材料进行热传导,同是也通过吸液芯毛细孔内的液态金属进行传导。在多孔吸液芯的情况下,对流传热是很小的,因为要产生有实际意义的对流流动,毛细孔显得太小了。通过吸液芯材料和工作液体的传导所产生的温差是热管热流通路中的主要温度梯度之一,它的大小取决于工作液体、吸液芯材料、吸液芯厚度以及径向净热流量。这个温降可以从摄氏几度到几十度。

热量传递到液—汽分界面附近以后,液体就可能蒸发,与液体蒸发的同时,由于从表面离开的液体质量使液—汽交界面缩回到吸液芯里面,形成一个凹形的弯月面(如图1.2),这个弯月面的形状对热管工作性能有决定性影响。单个毛细孔上简单的力学平衡现象表明,对于球形分界面,蒸汽压力与液体压力之差是等于表面张力除以弯月面半径之商的两倍。这个压差是液体流动和蒸汽流动的基本推动力。它主要起到循环时作用于液体的重力和粘滞力相抗衡的作用。在蒸发段,如果热量进一步增高,则弯月面还要进一步缩入到吸液芯里面,最后它可能妨碍毛细结构中的液体流动,并破坏热管的正常工作。

当蒸发段里的液体一旦因吸收了汽化潜热并蒸发时,蒸汽就开始通过热管的蒸汽腔向冷却段流动。此流动是由蒸汽腔两端的小压差引起的。蒸发段内蒸汽的温度比冷却段内的饱和温度稍高一些,从而形成了两端的温度差。蒸发段与冷却段之间这个温差常常可作为热管工作成功与否的一个判据。如果此温差小于0.5℃或1℃,则热管常常被称为在“热管工况”下工作,即等温工作。

在蒸汽向冷却段流动的同时,在蒸发段的沿途上不断加进补充的质量(蒸汽),因此在整个蒸发段内,轴向的质量流量和速度是不断增加的,在热管的冷却段内则出现相反的情况。

热管内的蒸汽流动可以是层流,也可是湍流,这取决于热管的实际工作情况。当蒸汽流过蒸发段和绝热段时,由于粘滞效应和速度效应使得压力不断下降(在绝热段只有粘滞效应),一旦到达冷却段,蒸汽就开始在液体—吸液芯表面上凝结,减速流动使部分动能转化为静压能,从而使得在流体运动的方向上压力有所回升。应该指出:蒸汽腔内的驱动压力要比蒸发段与冷却段内液体的饱和蒸汽压差销为小一些。这是因为要维持一个边界蒸发的过程,蒸发段内液体的蒸汽压力必须超过该处与之相对应的蒸汽压力。同样,为了保持连续凝结,正在冷凝中的蒸汽压力必须超过该处与之对应的液体的蒸汽压力。

当蒸汽凝结时,液体就浸透冷却段内的吸液芯毛细孔,弯月面具有很大的曲率半径,可以认为是无穷大。在热管内只要有过量的工质,就一定集中在冷凝表面上,因而实际上冷凝段的汽—液分界面是一个平面,蒸汽凝结释放出的潜热

通过吸液芯、液体层和管壁把热量传给管外冷源。如果有过量液体存在,则从分界面到管壁外面的温降将比蒸发段内相应的温降大,因而,冷却段内的热阻在热管设计中是应当考虑的重要热阻之一。

二、结构说明

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4