2019年5月湖北省武汉市高三高2019届高2016级理科数学模拟试卷及解析

2019年5月湖北省武汉市高三高2019届高2016级理科数学模

拟试卷及解析

一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.

1.(5分)已知集合A={1,2,3,4},B={x|(x+l)(x﹣3)<0},则A∩B=( ) A.{1,2}

B.{2,4}

C.{1,2,4}

D.φ

2.(5分)已知F1(﹣3,0),F2(3,0),若点P(x,y)满足|PF1|﹣|PF2|=6,则P点的轨迹为( ) A.椭圆 C.双曲线的一支

3.(5分)在复平面内,给出以下说法: ①实轴上的点表示的数均为实数; ②虚轴上的点表示的数均为纯虚数; ③共扼复数的实部相等,虚部互为相反数. 其中说法正确的个数为( ) A.0

4

B.双曲线 D.一条射线

B.1

2

3

C.2 D.3

4.(5分)已知a=0.2,b=0.3,c=0.4,则( ) A.b<a<c

B.a<c<b

C.c<a<b

D.a<b<c

5.(5分)已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是( ) A.若α⊥γ,β⊥γ,则α∥β C.若m∥α,n∥α,则m∥n

6.(5分)某变量X的总体密度曲线为y=y=

|cos

sin

B.若m⊥α,n⊥α,则m∥n D.若m∥α,m∥β,则α∥β

(0<x<2),变量T的总体密度曲线为

(|0<x<2),在同一直角坐标系中作两曲线如图所示,图中两阴影区域分别

记作Ⅰ、Ⅱ,在矩形OABC区域内任取点P,点P落在区域I或区域Ⅱ的概率为( )

A. B. C. D.

7.(5分)执行如图所示的程序框图,若输人n的值为4,则输出S的值为( )

A.34

B.98

C.258

D.642

8.(5分)某班星期二上午有五节课,下午有三节课,安排的课程有语文,数学,英语,物理,化学,生物,体育,其中数学是上午或下午连续的两节课,其余课程各一节,现将体育课安排在下午的第三节,则不同的安排方案有( ) A.120

B.480

C.600

D.720

9.(5分)函数f(x)=Asin(ωx﹣φ),其部分图象如图所示,则f(x)的表达式是( )

A.C.

10.(5分)已知(2﹣

n

B.D.

+

+

+……

)(n≥2,n∈N),展开式中x的系数为(fn),则

+A.

等于( )

B.

C.

D.

11.(5分)已知点P(x,y)是约束条件,表示的平面区域内任意一点,如果点P

(x,y)落在不等式x﹣y+a≥0所表示的平面区域的概率不小于,则实数a的取值范围为( ) A.(﹣∞,1]

B.(﹣∞,﹣1]

C.[1,+∞)

D.[﹣1,+∞)

12.(5分)设函数f(x)=,则y=2f(f(x))﹣f(x)的取值范围为( )

A.(﹣∞,0] C.[

,+∞)

B.[0,]

,+∞)

D.(﹣∞,0]∪[

二、填空题:本大题共4小题,每小题5分,共20分.

13.(5分)已知向量=(l,2),=(2,1),=(1,n),若(2﹣3)⊥,则n= 14.(5分)已知抛物线C:y=4标准方程为 .

15.(5分)等差数列{an}中,首项a1=1,末项an=31,若公差d为正整数,则项数n的不同取值有 种.

16.(5分)已知点P为半径等于2的球O球面上一点,过OP的中点E作垂直于OP的平面截球O的截面圆为圆E,圆E的内接△ABC中,∠ABC=90°,点B在AC上的射影为D,则三棱锥P﹣ABD体积的最大值为 .

三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17一21题为必考题,每个试题考生都必须作答.第22、23题为选考题.考生根据要求作答.(一)必考题:共60分. 17.(12分)如图,在△ABC中,BC=4,AC=5,AB=6,D在边AB上,CD为△ABC的角平分线. (1)求CD的长; (2)求△ACD的面积.

2

x的焦点是双曲线E:x﹣y=a右焦点,则双曲线E的

222

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4