(2) 设所求值为K,满足电池寿命在200±K小时范围内的概率不小于0.9,即有:
P(|X?200|?K)?P{|Z|=即:P{Z?|X?200|K?}?0.9
3030K}?0.95,K/30≥1.64485,故K≥49.3456。 303.12设X =同一时刻需用咨询服务的商品种数,由题意有X~B(6,0.2)
(1)X的最可能值为:X0=[(n+1)p]=[7×0.2]=1 (取整数) (2)P(X?2)?1?P(X?2)?1??C6k0.2k0.86?k
2k?0=1-0.9011=0.0989
第4章 抽样与抽样分布
4.1 a. 20, 2 b. 近似正态 c. -2.25 d. 1.50
4.2 a. 0.0228 b. 0.0668 c. 0.0062 d. 0.8185 e. 0.0013 4.3 a. 0.8944 b. 0.0228 c. 0.1292 d. 0.9699 4.4 a. 101, 99 b. 1 c. 不必 4.5 趋向正态
4.6. a. 正态分布, 213, 4.5918 b. 0.5, 0.031, 0.938
4.7. a. 406, 1.68, 正态分布 b. 0.001 c. 是,因为小概率出现了 4.8. a. 增加 b. 减少
4.9. a. 正态 b. 约等于0 c. 不正常 d. 正态, 0.06 4.10 a. 0.015 b. 0.0026 c. 0.1587
4.11. a. (0.012, 0.028) b. 0.6553, 0.7278 4.12. a. 0.05 b. 1 c. 0.000625
第5章 参数估计
5.1 (1)?x?0.79。(2)E=1.55。
5.2 (1)?x?2.14。(2)E=4.2。(3)(115.8,124.2)。 5.3 (2.88,3.76);(2.80,3.84);(2.63,4.01)。 5.4 (7.1,12.9)。 5.5 (7.18,11.57)。
5.6 (18.11%,27.89%);(17.17%,22.835)。 5.7 (1)(51.37%,76.63%);(2)36。 5.8 (1.86,17.74);(0.19,19.41)。
5.9
(1)2±1.176;(2)2±3.986;(3)2±3.986;(4)2±3.587;(5.10 (1)d?1.75,sd?2.63;(2)1.75±4.27。 5.11 (1)10%±6.98%;(2)10%±8.32%。 5.12 (4.06,14.35)。 5.13 48。 5.14 139。 5.15 57。 5.16 769。
编辑版word
5)2±3.364。
第6章 假设检验
6.1 研究者想要寻找证据予以支持的假设是“新型弦线的平均抗拉强度相对于以前提高了”,所以原假设与备择假设
应为:H0:??1035,H1:??1035。
6.2 ?=“某一品种的小鸡因为同类相残而导致的死亡率”,H0:??0.04,H1:??0.04。 6.3 H0:??65,H1:??65。
6.4 (1)第一类错误是该供应商提供的这批炸土豆片的平均重量的确大于等于60克,但检验结果却提供证据支持店
方倾向于认为其重量少于60克;
(2)第二类错误是该供应商提供的这批炸土豆片的平均重量其实少于60克,但检验结果却没有提供足够的证据支持店方发现这一点,从而拒收这批产品;
(3)连锁店的顾客们自然看重第二类错误,而供应商更看重第一类错误。 6.5 (1)检验统计量z?x??s/n,在大样本情形下近似服从标准正态分布;
(2)如果z?z0.05,就拒绝H0;
(3)检验统计量z=2.94>1.645,所以应该拒绝H0。 6.6 z=3.11,拒绝H0。 6.7 z=1.93,不拒绝H0。 6.8 z=7.48,拒绝H0。 6.9 ?=206.22,拒绝H0。 6.10 z=-5.145,拒绝H0。 6.11 t=1.36,不拒绝H0。 6.12 z=-4.05,拒绝H0。 6.13 F=8.28,拒绝H0。 6.14 (1)检验结果如下:
t-检验: 双样本等方差假设
平均 方差 观测值 合并方差 假设平均差 df t Stat P(T<=t) 单尾 t 单尾临界 P(T<=t) 双尾 t 双尾临界
变量 1
100.7
24.11578947
20
28.73684211
0 38
-5.427106029 1.73712E-06 1.685953066 3.47424E-06 2.024394234
变量 2
109.9
33.35789474
20
100.7
24.11578947
20 0 37
-5.427106029
编辑版word
2
变量 2
109.9
33.35789474
20
t-检验: 双样本异方差假设
平均 方差 观测值 假设平均差 df t Stat
变量 1
P(T<=t) 单尾 t 单尾临界 P(T<=t) 双尾 t 双尾临界
1.87355E-06 1.687094482 3.74709E-06 2.026190487
变量 1
100.7
24.11578947
20 19
0.722940991 0.243109655 0.395811384
变量 2
109.9
33.35789474
20 19
(2)方差检验结果如下:
F-检验 双样本方差分析
平均 方差 观测值 df F
P(F<=f) 单尾 F 单尾临界
第7章 方差分析与试验设计
7.1 F?4.6574?F0.01?8.0215(或P?value?0.0409???0.01),不能拒绝原假设。 7.2 F?17.0684?F0.05?3.8853(或P?value?0.0003???0.05),拒绝原假设。
xA?xB?44.4?30?14.4?LSD?5.85,拒绝原假设; xA?xC?44.4?42.6?1.8?LSD?5.85,不能拒绝原假设;
xB?xC?30?42.6?12.6?LSD?5.85,拒绝原假设。
7.3 方差分析表中所缺的数值如下表: 差异源 组间 组内 总计 SS 420 3836 4256 df 2 27 29 MS 210 142.07 — F 1.478 — — P-value 0.245946 — — F crit 3.354131 — F?1.478?F0.05?3.554131(或P?value?0.245946??— ?0.05),不能拒绝原假设。
7.4 有5种不同品种的种子和4种不同的施肥方案,在20快同样面积的土地上,分别采用5种种子和4种施肥方案搭
配进行试验,取得的收获量数据如下表:
F种子?7.2397?F0.05?3.2592(或P?value?0.0033???0.05),拒绝原假设。 F施肥方案?9.2047?F0.05?3.4903(或P?value?0.0019???0.05),拒绝原假设。
7.5 F地区?0.0727?F0.05?6.9443(或P?value?0.9311???0.05),不能拒绝原假设。
F包装方法?3.1273?F0.05?6.9443(或P?value?0.1522???0.05),不能拒绝原假设。 7.6 F广告方案?10.75?F0.05?5.1432(或P?value?0.0104???0.05),拒绝原假设。
F广告媒体?3?F0.05?5.9874(或P?value?0.1340???0.05),不能拒绝原假设。 F交互作用?1.75?F0.05?5.1432(或P?value?0.2519???0.05),不能拒绝原假设。
第8章 相关与回归分析
8.1(1)利用Excel计算结果可知,相关系数为 rXY?0.948138,说明相关程度较高。 (2)计算t统计量
t?rn?21?r2?0.948138?10?21?o.9481382?2.681739?8.436851
0.317859编辑版word
给定显著性水平=0.05,查t分布表得自由度n-2=10-2=8的临界值t?2为2.306,
显然t?t?2,表明相关系数 r 在统计上是显著的。
8.2 利用Excel中的”数据分析”计算各省市人均GDP和第一产业中就业比例的相关系数为:-0.34239,这说明人均GDP与第一产业中就业比例是负相关,但相关系数只有-0.34239,表明二者负相关程度并不大。 相关系数检验:
在总体相关系数??0的原假设下,计算t统计量:
t?rn?21?r2??0.34239?31?21?(?0.34239)2??1.9624
查t分布表,自由度为31-2=29,当显著性水平取??0.05时,t?2=2.045;当显著性水平取??0.1时,t?2=1.699。 由于计算的t统计量的绝对值1.9624小于t?2=2.045,所以在??0.05的显著性水平下,不能拒绝相关系数??0的原假设。即是说,在??0.05的显著性水平下不能认为人均GDP与第一产业中就业比例有显著的线性相关性。
但是计算的t统计量的绝对值1.9624大于t?2=1.699,所以在??0.1的显著性水平下,可以拒绝相关系数??0的原假设。即在??0.1的显著性水平下,可以认为人均GDP与第一产业中就业比例有一定的线性相关性。 8.3 设当年红利为Y,每股帐面价值为X 建立回归方程 Yi??1??2Xi?ui
估计参数为 Yi?0.479775?0.072876Xi
参数的经济意义是每股帐面价值增加1元时,当年红利将平均增加0.072876元。 序号6的公司每股帐面价值为19.25元,增加1元后为20.25元,当年红利可能为:
^^Yi?0.479775?0.072876?20.25?1.955514(元)
8.4 (1)数据散点图如下:
投诉率(次/10万名乘客)1.41.210.80.60.40.20657075航班正点率(%)8085
(2)根据散点图可以看出,随着航班正点率的提高,投诉率呈现出下降的趋势,两者之间存在着一定的负相关关系。
(3)设投诉率为Y,航班正点率为X
建立回归方程 Yi??1??2Xi?ui 估计参数为 Yi?6.0178?0.07Xi
(4)参数的经济意义是航班正点率每提高一个百分点,相应的投诉率(次/10万名乘客)下降0.07。 (5)航班按时到达的正点率为80%,估计每10万名乘客投诉的次数可能为:
^??6.0178?0.07?80?0.4187(次/10万) Yi8.5 由Excel回归输出的结果可以看出:
(1)回归结果为
编辑版word
Yi?32.99309?0.071619X2i?0.168727X3i?0.179042X3i
(2)由Excel的计算结果已知:?1,?2,?3,?4 对应的 t 统计量分别为0.51206、4.853871、4.222811、3.663731 ,其绝对值均大于临界值t0.025(22?4)?2.101 ,所以各个自变量都对Y有明显影响。
由F=58.20479, 大于临界值F0.05(4?1,22?4)?3.16,说明模型在整体上是显著的。
8.6 (1)该回归分析中样本容量是14+1=15 (2)计算RSS=66042-65965=77
ESS的自由度为k-1=2,RSS的自由度 n-k=15-3=12 (3)计算:可决系数 R?65965/66042?0.9988 修正的可决系数 R?1?22^15?1?(1?0.9988)?0.9986 15?3(4)检验X2和X3对Y是否有显著影响
F?ESS/(k?1)65965/232982???5140.11
RSS/(n?k)77/126.4166 (5) F统计量远比F临界值大,说明X2和X3联合起来对Y有显著影响,但并不能确定X2和X3各自对Y的贡献为多少。
8.7
来 源 来自回归 来自残差 总离差平方和 ^平方和 2179.56 99.11 2278.67 自由度 1 22 23 方差 2179.56 4.505 8.8 (1)用Excel输入Y和X数据,生成X和X223的数据,用Y对X、X、
X3回归,估计参数结果
为
Yi??1726.73?7.879646874Xi?0.00895X2?3.71249E?06X3
t=(-1.9213) (2.462897) (-2.55934) (3.118062) R?0.973669 R?0.963764
(2)检验参数的显著性:当取??0.05时,查t分布表得t0.025(12?4)?2.306,与t统计量对比,除了截距项外,
各回归系数对应的t统计量的绝对值均大于临界值,表明在这样的显著性水平下,回归系数显著不为0。 (3)检验整个回归方程的显著性:模型的R?0.973669,R?0.963794,说明可决系数较高,对样本数据拟合较好。由于F=98.60668,而当取??0.05时,查F分布表得F0.05(4?1,12?4)?4.07,因为F=98.60668>4.07,应
23拒绝H0:?2??3??4?0,说明X、X、X联合起来对Y确有显著影响。
2222(4)计算总成本对产量的非线性相关系数:因为R?0.973669因此总成本对产量的非线性相关系数为
2R2?0.973669或R=0.9867466
(5)评价:虽然经t检验各个系数均是显著的,但与临界值都十分接近,说明t检验只是勉强通过,其把握并不大。如果取??0.01,则查t分布表得t0.005(12?4)?3.3554,这时各个参数对应的t统计量的绝对值均小于临界值,则在??0.01的显著性水平下都应接受H0:?j?0的原假设。 8.9 利用Excel输入X、y和Y数据,用Y对X回归,估计参数结果为
??5.73?0.314x Yii编辑版word