数学史 勾股定理

毕达哥拉斯定理小记

2014071137 朱燕

初等几何中最引人注目的,也是最著名最有用的一个定理,就是所谓的毕达哥拉斯定理:在任何直角三角形中,斜边上的正方形等于两条直角边上的正方形之和。如果有一个定理可以当之无愧地算是数学史上的“菁华”,那么毕达哥拉斯定理大概 就是主要的候选者了,因为它可能是数学史上第一个真正名副其实的定理。但把这个著名的定理归功于毕达哥拉斯,似乎心里总不是那么踏实。其实在古代印度和中国的有些著作中也可以见到对该定理的阐述,这些著述的时期至少可以上溯至毕达哥拉斯的时代以前。很可能是毕达哥拉斯或他那著名的哥老会的某个成员,第一个对该定理提供了合乎逻辑的演绎证明。

在E.S.卢米斯的著作《毕达哥拉斯命题》第二版中,他搜集了这个著名定理的370种证明,并加以分类整理。

印度数学家兼天文学家巴斯卡拉给出了毕达哥拉斯定理的两种证明:其中一种如图一所示,由相似直角三角形可见cb?bm,ca?an,即是cm?b,cn?a,相加得到

22a2?b2?c?m?n??c2.这个证明在17世纪由英国数学家丁·瓦里斯(1616-1703)重新发

现。

图一

美国第二十任总统J·A·伽菲尔德极富创造力,他当学生时就对初等数学表现出热切的兴趣和良好的能力。他在和一些国会议员讨论数学问题时灵机一动想出来了一种非常漂亮的毕达哥拉斯定理的证明。即先用梯形面积公式,然后再把梯形面积表为它分成的三个直角三角形面积之和。这样求得的梯形面积表达式相等。故有:

?a?b??a?b?/2?2??ab?/2??c2/2,即a2?2ab?b2?2ab?c2

从而:a?b?c 如图二

222

图二

参考文献:[1] 刘培杰.从毕达哥拉斯到怀尔斯[M].哈尔滨.哈尔滨工业大学出版社,2006.10:21-23

>>闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳婀遍埀顒傛嚀鐎氼參宕崇壕瀣ㄤ汗闁圭儤鍨归崐鐐差渻閵堝棗绗掓い锔垮嵆瀵煡顢旈崼鐔蜂画濠电姴锕ら崯鎵不缂佹﹩娈介柣鎰綑閻忔潙鈹戦鐟颁壕闂備線娼ч悧鍡涘箠閹伴偊鏁婂┑鐘插€甸弨浠嬪箳閹惰棄纾归柟鐗堟緲绾惧鏌熼幆褍顣虫俊顐灦閺岀喖顢涢崱妤冪伇闁告艾顑夊娲传閸曨厾鍔圭紓鍌氱С缁舵岸鎮伴鈧畷鍫曨敆婢跺娅栭梻浣瑰缁诲倸螞瀹€鍕闁告侗鍠氱弧鈧梺姹囧灲濞佳勭濠婂嫪绻嗘い鏍ㄧ啲閺€鑽ょ磼閸屾氨孝妤楊亙鍗冲畷鐓庘攽閸偅袨闂傚倷绶氶埀顒傚仜閼活垱鏅堕濮愪簻妞ゅ繐瀚弳锝呪攽閳ュ磭鍩g€规洖宕灃闁逞屽墲閵嗘牜绱撻崒姘偓鎼佸磹閸濄儳鐭撻柡澶嬪殾濞戞鏃堝焵椤掑嫭鍋濆┑鐘宠壘闁裤倖淇婇妶鍕槮濞存粍绮撳铏圭矙鐠恒劎顔囬梺姹囧妿閸忔﹢鐛箛娑欐優闁革富鍘鹃敍婊呯磽閸屾瑩妾烽柛銊ョ秺閻涱噣寮介鐔哄幍闂佸憡鍔樼亸娆戠不濞差亝鐓忛柛銉e妼婵本銇勯敃鈧顓犳閹烘挻缍囬柕濞垮劜鐠囩偤姊虹拠鈥虫灀闁哄懐濮撮悾宄邦潨閳ь剟骞婇悩娲绘晞闁圭ǹ楠告禍婵堢磽閸屾艾鈧悂宕愭搴㈩偨闁跨喓濮寸粣妤呮煛瀹ュ骸骞楅柛瀣儔閺岀喖骞嗚閿涘秹鏌¢崱顓犵暤闁哄瞼鍠栭幃婊冾潨閸℃ḿ鏆﹂梻浣呵归敃锕傚礂濮椻偓楠炲啫螖閸涱喖浠洪梺璋庡棭鍤欐繝鈧柆宥呮瀬妞ゆ洍鍋撴鐐叉椤︻噣鏌¢埀顒佺鐎n偆鍘藉┑鈽嗗灥濞咃絾绂掑☉銏$厸闁糕€崇箲濞呭懘鏌嶇憴鍕伌妞ゃ垺鐟ч崰濠囧础閻愭惌鍟€闂傚倷鑳堕幊鎾剁不瀹ュ鍨傜痪顓炴噽娴滆棄鈹戦悙瀛樺鞍闁告垵缍婂畷褰掑箮閽樺鍔﹀銈嗗笒閸燁偊鎮¢幇鐗堢厪闁搞儜鍐句純閻庢鍠楀ḿ娆掔亙闂侀€炲苯澧紒鍌氱У閵堬綁宕橀埞鐐闂備礁鎲$换鍌溾偓姘煎櫍閹偟鎹勯妸褏锛滈梺鍝勮閸庢娊鎮鹃悜姗嗘闁绘劕寮堕ˉ銏⑩偓娈垮櫘閸o絽鐣锋總鍓叉晝闁挎繂妫欓悵顐⑩攽閻樺灚鏆╅柛瀣仱瀹曞綊宕奸弴鐔告珖闂佸啿鎼崐鎼侇敋闁秵鐓ラ柣鏇炲€圭€氾拷<<
12@gma联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4