高中数学圆锥曲线重要结论

圆锥曲线重要结论

椭 圆

1. 点P处的切线PT平分△PF1F2在点P处的外角.

2. PT平分△PF1F2在点P处的外角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ为直径的圆必与对应准线相离.

4. 以焦点半径PF1为直径的圆必与以长轴为直径的圆内切. 5. 6. 7. 8.

xxyyx2y2若P0(x0,y0)在椭圆2?2?1上,则过P0的椭圆的切线方程是02?02?1.

ababxxyyx2y2若P0(x0,y0)在椭圆2?2?1外 ,则过Po作椭圆的两条切线切点为P1、P2,则切点弦P1P2的直线方程是02?02?1.

ababx2y2?2椭圆2?2?1 (a>b>0)的左右焦点分别为F1,F 2,点P为椭圆上任意一点?F1PF2??,则椭圆的焦点角形的面积为S?F1PF2?btan.

ab2x2y2椭圆2?2?1(a>b>0)的焦半径公式:

ab|MF1|?a?ex0,|MF2|?a?ex0(F1(?c,0) , F2(c,0)M(x0,y0)).

9. 设过椭圆焦点F作直线与椭圆相交 P、Q两点,A为椭圆长轴上一个顶点,连结AP 和AQ分别交相应于焦点F的椭圆准线于M、N两点,则MF

⊥NF.

10. 过椭圆一个焦点F的直线与椭圆交于两点P、Q, A1、A2为椭圆长轴上的顶点,A1P和A2Q交于点M,A2P和A1Q交于点N,则MF⊥NF.

x2y2b211. AB是椭圆2?2?1的不平行于对称轴的弦,M(x0,y0)为AB的中点,则kOM?kAB??2,

aba即KABb2x0??2。

ay0双曲线

1. 点P处的切线PT平分△PF1F2在点P处的内角.

2. PT平分△PF1F2在点P处的内角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ为直径的圆必与对应准线相交.

4. 以焦点半径PF1为直径的圆必与以实轴为直径的圆相切.(内切:P在右支;外切:P在左支)

xxyyx2y25. 若P0(x0,y0)在双曲线2?2?1(a>0,b>0)上,则过P0的双曲线的切线方程是02?02?1.

ababxxyyx2y26. 若P0(x0,y0)在双曲线2?2?1(a>0,b>0)外 ,则过Po作双曲线的两条切线切点为P1、P2,则切点弦P1P2的直线方程是02?02?1.

ababx2y27. 双曲线2?2?1(a>0,b>o)的左右焦点分别为F1,F 2,点P为双曲线上任意一点?F1PF2??,则双曲线的焦点角形的面积为

abS?F1PF2?b2cot?2.

x2y28. 双曲线2?2?1(a>0,b>o)的焦半径公式:(F1(?c,0) , F2(c,0)

ab当M(x0,y0)在右支上时,|MF1|?ex0?a,|MF2|?ex0?a.

当M(x0,y0)在左支上时,|MF1|??ex0?a,|MF2|??ex0?a

9. 设过双曲线焦点F作直线与双曲线相交 P、Q两点,A为双曲线长轴上一个顶点,连结AP 和AQ分别交相应于焦点F的双曲线准线于M、N

两点,则MF⊥NF.

10. 过双曲线一个焦点F的直线与双曲线交于两点P、Q, A1、A2为双曲线实轴上的顶点,A1P和A2Q交于点M,A2P和A1Q交于点N,则MF⊥NF.

b2x0b2x0x2y211. AB是双曲线2?2?1(a>0,b>0)的不平行于对称轴的弦,M(x0,y0)为AB的中点,则KOM?KAB?2,即KAB?2。

abay0ay0x0xy0yx02y02x2y212. 若P0(x0,y0)在双曲线2?2?1(a>0,b>0)内,则被Po所平分的中点弦的方程是2?2?2?2.

abababx2y2x2y2x0xy0y13. 若P0(x0,y0)在双曲线2?2?1(a>0,b>0)内,则过Po的弦中点的轨迹方程是2?2?2?2.

ababab椭圆与双曲线的对偶性质--

椭 圆

x2y2x2y21. 椭圆2?2?1(a>b>o)的两个顶点为A1(?a,0),A2(a,0),与y轴平行的直线交椭圆于P1、P2时A1P1与A2P2交点的轨迹方程是2?2?1.

ababx2y2b2x02. 过椭圆2?2?1 (a>0, b>0)上任一点A(x0,y0)任意作两条倾斜角互补的直线交椭圆于B,C两点,则直线BC有定向且kBC?2(常数).

abay0x2y2a?c??3. 若P为椭圆2?2?1(a>b>0)上异于长轴端点的任一点,F1, F 2是焦点, ?PF1F2??, ?PF2F1??,则?tancot.

aba?c22x2y24. 设椭圆2?2?1(a>b>0)的两个焦点为F1、F2,P(异于长轴端点)为椭圆上任意一点,在△PF1F2中,记?F1PF2??,

ab?PF1F2??,?F1F2P??,则有

sin?c??e.

sin??sin?ax2y25. 若椭圆2?2?1(a>b>0)的左、右焦点分别为F1、F2,左准线为L,则当0<e≤2?1时,可在椭圆上求一点P,使得PF1是P到对应准

ab

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4