2017年北京市高考数学试卷(理科)(真题详细解析)

|=.

【点评】本题考查线面角与面面角的求法,训练了利用空间向量求空间角,属中档题.

17.(13分)为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x和y的数据,并制成如图,其中“*”表示服药者,“+”表示未服药者.

(1)从服药的50名患者中随机选出一人,求此人指标y的值小于60的概率; (2)从图中A,B,C,D四人中随机选出两人,记ξ为选出的两人中指标x的值大于1.7的人数,求ξ的分布列和数学期望E(ξ);

(3)试判断这100名患者中服药者指标y数据的方差与未服药者指标y数据的方差的大小.(只需写出结论)

【分析】(1)由图求出在50名服药患者中,有15名患者指标y的值小于60,由此能求出从服药的50名患者中随机选出一人,此人指标小于60的概率.

第16页(共22页)

(2)由图知:A、C两人指标x的值大于1.7,而B、D两人则小于1.7,可知在四人中随机选项出的2人中指标x的值大于1.7的人数ξ的可能取值为0,1,2,分别求出相应的概率,由此能求出ξ的分布列和E(ξ).

(3)由图知100名患者中服药者指标y数据的方差比未服药者指标y数据的方差大.

【解答】解:(1)由图知:在50名服药患者中,有15名患者指标y的值小于60,

则从服药的50名患者中随机选出一人,此人指标小于60的概率为: p=

=

(2)由图知:A、C两人指标x的值大于1.7,而B、D两人则小于1.7, 可知在四人中随机选项出的2人中指标x的值大于1.7的人数ξ的可能取值为0,1,2, P(ξ=0)=

P(ξ=1)=P(ξ=2)=

=, =,

∴ξ的分布列如下:

ξ P E(ξ)=

0 1 2 =1.

(3)由图知100名患者中服药者指标y数据的方差比未服药者指标y数据的方差大.

【点评】本题考查概率的求法,考查离散型随机变量的分布列、数学期望、方差等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.

第17页(共22页)

18.(14分)已知抛物线C:y2=2px过点P(1,1).过点(0,)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP、ON交于点A,B,其中O为原点.

(1)求抛物线C的方程,并求其焦点坐标和准线方程; (2)求证:A为线段BM的中点.

【分析】(1)根据抛物线过点P(1,1).代值求出p,即可求出抛物线C的方程,焦点坐标和准线方程;

(2)设过点(0,)的直线方程为y=kx+,M(x1,y1),N(x2,y2),根据韦达定理得到x1+x2=

,x1x2=

,根据中点的定义即可证明.

【解答】解:(1)∵y2=2px过点P(1,1), ∴1=2p, 解得p=, ∴y2=x,

∴焦点坐标为(,0),准线为x=﹣, (2)证明:设过点(0,)的直线方程为 y=kx+,M(x1,y1),N(x2,y2), ∴直线OP为y=x,直线ON为:y=

x,

由题意知A(x1,x1),B(x1,

),

,可得k2x2+(k﹣1)x+=0,

∴x1+x2=,x1x2=

∴y1+=kx1++=2kx1+=2kx1+=2kx1+(1﹣k)

第18页(共22页)

?2x1=2x1,

∴A为线段BM的中点.

【点评】本题考查了抛物线的简单性质,以及直线和抛物线的关系,灵活利用韦达定理和中点的定义,属于中档题.

19.(13分)已知函数f(x)=excosx﹣x.

(1)求曲线y=f(x)在点(0,f(0))处的切线方程; (2)求函数f(x)在区间[0,

]上的最大值和最小值.

【分析】(1)求出f(x)的导数,可得切线的斜率和切点,由点斜式方程即可得到所求方程;

(2)求出f(x)的导数,再令g(x)=f′(x),求出g(x)的导数,可得g(x)在区间[0,

]的单调性,即可得到f(x)的单调性,进而得到f(x)的最值.

【解答】解:(1)函数f(x)=excosx﹣x的导数为f′(x)=ex(cosx﹣sinx)﹣1, 可得曲线y=f(x)在点(0,f(0))处的切线斜率为k=e0(cos0﹣sin0)﹣1=0, 切点为(0,e0cos0﹣0),即为(0,1),

曲线y=f(x)在点(0,f(0))处的切线方程为y=1;

(2)函数f(x)=excosx﹣x的导数为f′(x)=ex(cosx﹣sinx)﹣1, 令g(x)=ex(cosx﹣sinx)﹣1,

则g(x)的导数为g′(x)=ex(cosx﹣sinx﹣sinx﹣cosx)=﹣2ex?sinx, 当x∈[0,

],可得g′(x)=﹣2ex?sinx≤0,

]递减,可得g(x)≤g(0)=0, ]递减,

即有g(x)在[0,则f(x)在[0,

第19页(共22页)

即有函数f(x)在区间[0,

]上的最大值为f(0)=e0cos0﹣0=1; ﹣

=﹣

最小值为f()=ecos

【点评】本题考查导数的运用:求切线的方程和单调区间、最值,考查化简整理的运算能力,正确求导和运用二次求导是解题的关键,属于中档题.

20.(13分)设{an}和{bn}是两个等差数列,记cn=max{b1﹣a1n,b2﹣a2n,…,bn﹣ann}(n=1,2,3,…),其中max{x1,x2,…,xs}表示x1,x2,…,xs这s个数中最大的数.

(1)若an=n,bn=2n﹣1,求c1,c2,c3的值,并证明{cn}是等差数列; (2)证明:或者对任意正数M,存在正整数m,当n≥m时,在正整数m,使得cm,cm+1,cm+2,…是等差数列.

【分析】(1)分别求得a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,代入即可求得c1,c2,c3;由(bk﹣nak)﹣(b1﹣na1)≤0,则b1﹣na1≥bk﹣nak,则cn=b1﹣na1=1﹣n,cn+1﹣cn=﹣1对?n∈N*均成立;

(2)由bi﹣ain=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),分类讨论d1=0,d1>0,d1<0三种情况进行讨论根据等差数列的性质,即可求得使得cm,cm+1,cm+2,…是等差数列;设存在正整数m,使得n≥m,

=An+B+对任意正整数M,

>M;或者存

>M,分类讨论,采用放缩法即可求得因此对任

>M.

意正数M,存在正整数m,使得当n≥m时,

【解答】解:(1)a1=1,a2=2,a3=3,b1=1,b2=3,b3=5, 当n=1时,c1=max{b1﹣a1}=max{0}=0,

当n=2时,c2=max{b1﹣2a1,b2﹣2a2}=max{﹣1,﹣1}=﹣1,

当n=3时,c3=max{b1﹣3a1,b2﹣3a2,b3﹣3a3}=max{﹣2,﹣3,﹣4}=﹣2, 下面证明:对?n∈N*,且n≥2,都有cn=b1﹣na1, 当n∈N*,且2≤k≤n时, 则(bk﹣nak)﹣(b1﹣na1), =[(2k﹣1)﹣nk]﹣1+n,

第20页(共22页)

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4