电子信息材料专业实习报告
电子信息材料是指在微电子、光电子技术和新型电子元器件领域中所用的材料,主要包括微电子材料、光电子材料、传感材料、磁性材料、电子陶瓷材料等,它们支撑着通信、计算机、信息家电和网络技术等现代信息产业及航空、航天、精确制导、灵巧武器等领域的发展。
电子信息材料是发展电子信息产业的先导和基础。以单晶硅为代表的第一代半导体材料是集成电路产业的基础。1948年发明了晶体管,1960年集成电路问世,1962年出现第一代半导体激光器,导致了电子技术、光电子技术革命,产生了半导体微电子学与半导体光电子学,有力地推动了计算机、通讯技术发生根本改变。
光电子技术是现代信息技术的基石,21世纪是光电子时代。以砷化镓、磷化铟等化合物为代表的第二代半导体材料是新型激光器和光探测器用材料。半导体发光二极管的出现,其意义不亚于爱迪生发明白炽灯。半导体灯小巧可靠、寿命长,驱动电压低,发光效率高。它可以发出赤橙黄绿青蓝紫等的全彩色光和白色,它占尽了照明灯、指示灯的全部优点。半导体光照明的主体材料主要是第二代、第三代半导体材料,特别是第三代半导体材料氮化镓,它是唯一能发出蓝光和白光的材料。
磁性材料、电子陶瓷材料广泛应用于计算机、通信、航空等各个领域,是新型器件的基础材料。
(一)半导体材料(semiconductor material)
导电能力介于导体与绝缘体之间的物质称为半导体。半导体材料是一类具有半导体性能、可用来制作半导体器件和集成电的电子材料,
其电导率在10(U-3)~10(U-9)欧姆/厘米范围内。半导体材料的电学性质对光、热、电、磁等外界因素的变化十分敏感,在半导体材料中掺入少量杂质可以控制这类材料的电导率。正是利用半导体材料的这些性质,才制造出功能多样的半导体器件。 半导体材料是半导体工业的基础,它的发展对半导体技术的发展有极大的影响。
特性和参数 半导体材料的导电性对某些微量杂质极敏感。纯度很高的半导体材料称为本征半导体,常温下其电阻率很高,是电的不良导体。在高纯半导体材料中掺入适当杂质后,由于杂质原子提供导电载流子,使材料的电阻率大为降低。这种掺杂半导体常称为杂质半导体。杂质半导体靠导带电子导电的称N型半导体,靠价带空穴导电的称P型半导体。不同类型半导体间接触(构成PN结)或半导体与金属接触时,因电子(或空穴)浓度差而产生扩散,在接触处形成位垒,因而这类接触具有单向导电性。利用PN结的单向导电性,可以制成具有不同功能的半导体器件,如二极管、三极管、晶闸管等。此外,半导体材料的导电性对外界条件(如热、光、电、磁等因素)的变化非常敏感,据此可以制造各种敏感元件,用于信息转换。
种类 常用的半导体材料分为元素半导体和化合物半导体。元素半导体是由单一元素制成的半导体材料。主要有硅、锗、硒等,以硅、锗应用最广。用硅制造的半导体器件,耐高温和抗辐射性能较好,特别适宜制作大功率器件。因此,硅已成为应用最多的一种增导体材料,目前的集成电路大多数是用硅材料制造的。化合物半导体由两种或两种以上的元素化合而成的半导体材料。它的种类很多,重要的有砷化
镓、磷化锢、锑化锢、碳化硅、硫化镉及镓砷硅等。其中砷化镓是制造微波器件和集成电的重要材料。碳化硅由于其抗辐射能力强、耐高温和化学稳定性好,在航天技术领域有着广泛的应用。
制备 不同的半导体器件对半导体材料有不同的形态要求,包括单晶的切片、磨片、抛光片、薄膜等。常用的半导体材料制备工艺有提纯、单晶的制备和薄膜外延生长。所有的半导体材料都需要对原料进行提纯,要求的纯度在6个“9”以上 ,最高达11个“9”以上。提纯的方法分两大类,一类是不改变材料的化学组成进行提纯,称为物理提纯;另一类是把元素先变成化合物进行提纯,再将提纯后的化合物还原成元素,称为化学提纯。物理提纯的方法有真空蒸发、区域精制、拉晶提纯等,使用最多的是区域精制。化学提纯的主要方法有电解、络合、萃取、精馏等,使用最多的是精馏。由于每一种方法都有一定的局限性,因此常使用几种提纯方法相结合的工艺流程以获得合格的材料。绝大多数半导体器件是在单晶片或以单晶片为衬底的外延片上作出的。成批量的半导体单晶都是用熔体生长法制成的。直拉法应用最广,80%的硅单晶是用此法生产的,其中硅单晶的最大直径已达300 毫米。在熔体中通入磁场的直拉法称为磁控拉晶法,用此法已生产出高均匀性硅单晶。悬浮区熔法的熔体不与容器接触,用此法生长高纯硅单晶。用各种方法生产的体单晶再经过晶体定向、滚磨、作参考面、切片、磨片、倒角、抛光、腐蚀、清洗、检测、封装等全部或部分工序以提供相应的晶片。在单晶衬底上生长单晶薄膜称为外延。外延的方法有气相、液相、固相、分子束外延等。工业生产使用的主要是化
学气相外延,其次是液相外延。金属有机化合物气相外延和分子束外延则用于制备量子阱及超晶格等微结构。非晶、微晶、多晶薄膜多在玻璃、陶瓷、金属等衬底上用不同类型的化学气相沉积、磁控溅射等方法制成。
(二)磁性材料
磁性材料,主要是指由过度元素铁,钴,镍及其合金等能够直接或间接产生磁性的物质。从应用功能上讲,磁性材料分为:软磁材料、永磁材料、磁记录-矩磁材料、旋磁材料等等种类。软磁材料、永磁材料、磁记录-矩磁材料中既有金属材料又有铁氧体材料。磁性材料的应用很广泛,变压器磁性材料是生产、生活、国防科学技术中广泛使用的材料。如制造电力技术中的各种电机、变压器,电子技术中的各种磁性元件和微波电子管,通信技术中的滤波器和增感器,国防技术中的磁性水雷、电磁炮,各种家用电器等。此外,磁性材料在地矿探测、海洋探测以及信息、能源、生物、空间新技术中也获得了广泛的应用。磁性材料的用途广泛。主要是利用其各种磁特性和特殊效应制成元件或器件;用于存储、传输和转换电磁能量与信息,或在特定空间产生一定强度和分布的磁场;有时也以材料的自然形态而直接利用(如磁性液体)。磁性材料在电子技术领域和其他科学技术领域中都有重要的作用,可用于电声、电信、电表、电机中,还可作记忆元件、微波元件等。可用于记录语言、音乐、图像信息的磁带、计算机的磁性存储设备、乘客乘车的凭证和票价结算的磁性卡等。
软磁材料指在较弱的磁场下,易磁化也易退磁的一种铁氧体材料。软磁材料,它的功能主要是导磁、电磁能量的转换与传输。软磁材料的应用
甚广,主要用于磁性天线、电感器、变压器、磁头、耳机、继电器、振动子、电视偏转轭、电缆、延迟线、传感器、微波吸收材料、电磁铁、加速器高频加速腔、磁场探头、磁性基片、磁场屏蔽、高频淬火聚能、电磁吸盘、磁敏元件(如磁热材料作开关)等。主要用作各种电感元件,如滤波器、变压器及天线的磁性和磁带录音、录像的磁头。
永磁材料有合金、铁氧体和金属间化合物三类。 永磁材料有多种用途。①基于电磁力作用原理的应用主要有:扬声器、话筒、电表、按键、电机、继电器、传感器、开关等。②基于磁电作用原理的应用主要有:磁控管和行波管等微波电子管、显像管、钛泵、微波铁氧体器件、磁阻器件、霍尔器件等。③基于磁力作用原理的应用主要有:磁轴承、选矿机、磁力分离器、磁性吸盘、磁密封、磁黑板、玩具、标牌、密码锁、复印机、控温计等。其他方面的应用还有:磁疗、磁化水、磁麻醉等。永磁铁氧体晶体典型代表是钡铁氧体BaFe12O19。这种材料性能较好,成本较低,不仅可用作电讯器件如录音器、电话机及各种仪表的磁铁,而已在医学、生物和印刷显示等方面也得到了应用。
矩磁材料和磁记录材料 ,主要用作信息记录、无接点开关、逻辑操作和信息放大。这种材料的特点是磁滞回线呈矩形。
通过此次专业认识实习,不仅明白了以上的专业内容,还意识到了自己肩上的重大责任,在以后的专业学习过程中,一定不辜负老师的殷殷期望,努力学习,把有限的生命投入到无限的电子信息材料事业的奋斗中去。