浙江省金华、丽水市中考数学真题试卷(解析版)

浙江省金华市2018年中考数学试卷

一、一、选择题(共10题;共20分)

1.在0,1,

,?1四个数中,最小的数是( )

D. ?1 ,

,即-1是最小的数.故

A. 0 B. 1 C. 【解析】【解答】解: 答案为:D。

【分析】这些都是有理数,有正数和负数,0时,比较有理数的大小,一般有两种方法:一是根据比较有理数大小的规则;二是根据有理数在数轴上的位置,数轴上右边的数总比左边的数大 2.计算

结果正确的是( )

C.

D.

A. B. 【解析】【解答】解:

,故答案为:B。

=

,则可用同底数幂的除法法则计算即可。

【分析】考查同底数幂的除法法则;

3.如图,∠B的同位角可以是( )

A. ∠1 B. ∠2 C. ∠3 D. ∠4

【解析】【解答】解:直线DE和直线BC被直线AB所截成的∠ B与∠ 4构成同位角,故答案为:D 【分析】考查同位角的定义;需要找一个角与∠ B构造的形状类似于“F” 4.若分式

的值为0,则x的值是( )

C. 3或

的值为0,则

D. 0 ,解得

.故答案为:A.

A. 3 B. 【解析】【解答】解:若分式

【分析】分式指的是分母是含字母的整式且分母的值不为0的代数式;当分式为0时,则分子为零,分母不能为0.

5.一个几何体的三视图如图所示,该几何体是( )

A. 直三棱柱 B. 长方体 C. 圆锥 D. 立方体

【解析】【解答】主视图是三角形的几何图形可能是直三棱柱和圆锥,左视图是长方形的,也只有直三棱柱,故答案为:A。

【分析】考查由简单几何图形的三视图描述几何图形;根据三视图分别对应选项中,判断是否符号,并逐个排除.其中,主视图是三角形的可能是直三棱柱(直三棱柱有一个面是三角形),也可能是圆锥;也可以根据三视图直接得到几何图形的形状。

6.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,

指针停止后落在黄色区域的概率是( )

A. B. C. D. 【解析】【解答】解:P(指针停止后落在黄色区域)= 【分析】角度占360°的比例,即为指针转到该区域的概率。

,故答案为:B。

7.小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是( )

A. (5,30) B. (8,10) C. (9,10) D. (10,10)

【解析】【解答】解:因为点P在第一象限,点P到x轴的距离为:40-30=10,即纵坐标为10;点P到y轴的距离为

,即横坐标为9,∴点P(9,10),故答案为:C。

【分析】在直角坐标系中确定点的坐标,即要确定该点的横、纵坐标,或者求出该点到x轴,y轴的距离,再根据该点所在的象限,得到该点的坐标;根据图中所给的数据,可分别求出点P到x轴,y轴的距离,又点P在第一象限,即可得出。

8.如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α , ∠ADC=β , 则竹竿AB与AD的长度之比

为( )

A. B. C. D.

【解析】【解答】解:设AC=x, 在Rt△ABC中,AB= 在Rt△ACD中,AD=

. ,

故答案为:B。

【分析】求AB与AD的比,就不必就求AB和AD的具体的长度,不妨设AB=x,用含x的代数式分别表示出AB,AD的长,再求比。

9.如图,将△ABC绕点C顺时针旋转90°得到△EDC . 若点A , D , E在同一条直线上,∠ACB=20°,

则∠ADC的度数是( )

A. 55° B. 60° C. 65° D. 70° 【解析】【解答】解:∵将△ABC绕点C顺时针旋转90°得到△EDC . ∴∠ACE=90°,AC=CE , ∴∠E=45°,

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4