2018年小学五年级奥数举一反三(完整版)

数学奥数培训资料

1.甲、乙两个码头相距144千米,汽船从乙码头逆水行驶8小时到达甲码头,已知汽船在静水中每小时行驶21千米。求汽船从甲码头顺流行驶几小时到达乙码头? 2.一艘客轮从甲港驶向乙港,全程要行165千米。已知客轮的静水速度是每小时30千米,水速每小时3千米。现在正好是顺流而行,行全程需要几小时?

【例题4】 幼儿园小班的20个小朋友和大班的30个小朋友一起分饼干,小班的小朋友每人分10块,大班的小朋友每人比大、小班小朋友的平均数多2块。求一共分掉多少块饼干?

【思路导航】只要知道了大、小班小朋友分得的平均数,再乘(30+20)人就能求出饼干的总块数。因为大班的小朋友每人比大、小班小朋友的平均数多2块,30个小朋友一共多2×30=60(块),这60块平均分给20个小班的小朋友,每人可得60÷20=3(块)。因此,大、小班小朋友分得平均块数是10+3=13(块)。一共分掉13×(30+20)=650(块)。

练习4:

1.数学兴趣小组里有4名女生和3名男生,在一次数学竞赛中,女生的平均分是90分,男生的平均分比全组的平均分高2分,全组的平均分是多少分?

2.两组同学跳绳,第一组有25人,平均每人跳80下;第二组有20人,平均每人比两组同学跳的平均数多5下,两组同学平均每人跳几下?

【例题5】 王强从A地到B地,先骑自行车行完全程的一半,每小时行12千米。剩下的步行,每小时走4千米。王强行完全程的平均速度是每小时多少千米?

【思路导航】求行完全程的平均速度,应该用全程除以行全程所用的时间。由于题中没有告诉我们A地到B地间的路程,我们可以设全程为24千米(也可以设其他数),这样,就可以算出行全程所用的时间是12÷12+12÷4=4(小时),再用24÷4就能得到行全程的平均速度是每小时6千米。

练习5:

1.小明去爬山,上山时每小时行3千米,原路返回时每小时行5千米。求小明往返的平均速度。

2.运动员进行长跑训练,他在前一半路程中每分钟跑150米,后一半路程中每分钟跑100米。求他在整个长跑中的平均速度。

- 5 -

数学奥数培训资料 箭金学堂

课后作业

思考题

- 6 -

数学奥数培训资料

第3讲 长方形、正方形的周长

一、知识要点

同学们都知道,长方形的周长=(长+宽)×2.正方形的周长=边长×4。长方形、正方形的周长公式只能用来计算标准的长方形和正方形的周长。如何应用所学知识巧求表面上看起来不是长方形或正方形的图形的周长,还需同学们灵活应用已学知识,掌握转化的思考方法,把复杂的问题转化为标准的图形,以便计算它们的周长。

二、精讲精练

【例题1】 有5张同样大小的纸如下图(a)重叠着,每张纸都是边长6厘米的正方形,重叠的部分为边长的一半,求重叠后图形的周长。

【思路导航】 根据题意,我们可以把每个正方形的边长的一半同时向左、右、上、下平移(如图b),转化成一个大正方形,这个大正方形的周长和原来5个小正方形重叠后的图形的周长相等。因此,所求周长是18×4=72厘米。

练习1:

1.下图由8个边长都是2厘米的正方形组成,求这个图形的周长。

2.下图由1个正方形和2个长方形组成,求这个图形的周长。

【例题2】 一块长方形木板,沿着它的长度不同的两条边各截去4厘米,截掉的面积为192平方厘米。现在这块木板的周长是多少厘米?

【思路导航】 把截掉的192平方厘米分成A、B、C三块(如图),其中AB的面积是192-4×4=176(平方厘米)。把A和B移到一起拼成一个宽4厘米的长方形,而此长方形的长就是这块木板剩下部

分的周长的一半。176÷4=44(厘米),现在这块木板的周长是44×2=88(厘米)。

练习2:

1.有一个长方形,如果长减少4米,宽减少2米,面积就比原来减少44平方米,且剩下部分正好是一个正方形。求这个正方形的周长。

2.有两个相同的长方形,长是8厘米,宽是3厘米,如果按下图叠放在一起,这个图形的周长是多少?

- 7 -

数学奥数培训资料 箭金学堂

【例题3】 已知下图中,甲是正方形,乙是长方形,整个图形的周长是多少?

【思路导航】 从图中可以看出,整个图形的周长由六条线段围成,其中三条横着,三条竖着。三条横着的线段和是(a+b)×2.三条竖着的线段和是b×2。所以,整个图形的

周长是(a+b)×2+b×2.即2a+4b。

练习3:

1.一个长12厘米,宽2厘米的长方形和两个正方形正好拼成下图(1)所示长方形,求所拼长方形的周长。

2.求下面图形(图2)的周长(单位:厘米)。

图(1) 图(2)

【例题4】 下图是边长为4厘米的正方形,求正方形中阴影部分的周长。 【思路导航】 我们把阴影部分周长中左边的5条线段全部平移到左边,其和正好是4厘米。再把下面的线段全部平移到下面,其和也正好是4厘米。因此,阴影部分的周长与边长是4厘米的正方形的周长是相等的。

练习4:

1.求下面图形的周长(单位:厘米)。 2.在( )里填上“>”、“<”或“=”。甲的周长( )乙的周长 3.下图中的每一小段的长度都相等,求图形的周长。

【例题5】 如下图,阴影部分是正方形,DF=6厘米,AB=9厘米,求最大的长方形的周长。

【思路导航】根据题意可知,最大长方形的宽就是正方形的边长。因为BC=EF,CF=DE,所以,AB+BC+CF=AB+FE+ED=9+6=15(厘米),这正好是最大长方形周长的一半。因此,最大长方形的周长是(9+6)×2=30(厘米)。

练习5:

1.下面三个正方形的面积相等,剪去阴影部分的面积也相等,求原来正方形的周长发生了什么变化?(单位:厘米)

- 8 -

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4