到球心上,其变换的雅克比行列式
?(x,y,z)?1,所以
?(u,v,w)u?v2?w2?R2w?02(x?a)?(y?b)?(z?c)?Rz?c2???[2x?2y?y(x?a)]dxdydz?222???[2(u?a?v?b)?u(v?b)]dudvdw?u2?v2?w2?R2w?0???[2(u?v)?u(v?b)]dudvdw?u2?v2?w2?R2w?0???2(a?b)dudvdw
?0?14342(a?b)dudvdw?2(a?b)???R??(a?b)R3 ???233u?v?w?Rw?02222其中利用了对称性。第二项积分为
??1??xdydz?ydzdx?(x?a)yzdxdy???(x?a)yzdxdy
22??1?(x?a)2?(y?b)2?R2??(x?a)ycdxdy???u(v?b)cdxdy?0
u2?v2?R2其中利用了平移变换和对称性
43故I???(x?a)yzdxdy?xdydz?ydzdx??(a?b)R。
?3229. 设a0?4,a1?1,an?2?n(n?1)an,, (n?2)(1)求幂级数?anx的和函数s(x);(2)求s(x)的极值。
nn?0?解:(1)设幂级数?anx的和函数为s(x),其收敛区间为(?R,R)。
nn?0?13n2?ax?4?x?2x?x??,s(0)?4,s?(0)?1 s(x)?nn?06?s?(x)??nanxn?1,
?n?1s??(x)??n(n?1)anxn?2?n?2??an?2xn?2?n?2??anxn?s(x)
n?0?所以s??(x)?s(x),解此二阶常系数线性齐次方程,其通解为
s(x)?c1ex?c2e?x
5x3?x代入初值s(0)?4,s?(0)?1得s(x)?e?e,x?(?R,R);
225x3?x5x3?x???(2)s(x)?e?e,s(x)?e?e?0,
22225x3?x1313???令s(x)?e?e?0,得惟一驻点x?ln,且s(ln)?0,
25252213和函数为s(x)在x?ln处取极小值。
2510. (10分)设?是由球面x2旋转的转动惯量。(设?求?绕直线l:2x?y?z?y2?z2?1围成的区域,
?1) 解1:由于直线l:2x?y?z过原点,所以球面x2?y2?z2?1围成的区域?对于l的转动惯量等价于?对于任一坐标轴的转动惯量。因此所求的转动惯量为?对Z轴的转动惯量。利用球坐标计算
Il?IZ????(x2?y2)dV??0d??0d??0[(rsin?cos?)2?(rsin?sin?)2]r2sin?dr
2??32?48??143?2??0sin?d??0rdr??0sin?d????。
55315解2:设M(x,y,z)为?内的任一点,为求M(x,y,z)点到直线l的距离,注意到该直线过原点,从M向l作垂线,记垂足为N,则三角形?OMN就构成直角三
角形,且ON?PrjlOM,而MN即为所求的距离d。
2???1d2?OM2?(PrjlOM)2?(x2?y2?z2)?[OM?l0]2
2112?(x2?y2?z2)?[(x,y,z)?(,,)]
6662xyz21252524xy4xz2zy?(x2?y2?z2)?(??)?x?y?z???366666666于是?绕直线l旋转的转动惯量为
1252524xy4xz2zyIl????[x?y?z???]dV
?36666615551????[x2?y2?z2]dV????(x2?y2?z2)dV????x2dV ?3666?2?51????(x2?y2?z2)dV????(x2?y2?z2)dV 6?6?42?8??1. ??0d??0sin?d??0r4dr?615