小学五年级奥数讲义(教师版)

小学奥数基础教程(五年级)

第1讲数字迷(一) 第16讲 巧算24 第2讲 数字谜(二) 第17讲 位置原则 第3讲 定义新运算(一) 第18讲 最大最小

第4讲 定义新运算(二) 第19讲 图形的分割与拼接 第5讲 数的整除性(一) 第20讲 多边形的面积 第6讲 数的整除性(二) 第7讲 奇偶性(一) 第8讲 奇偶性(二) 第9讲 奇偶性(三) 第10讲 质数与合数 第11讲 分解质因数 第12讲 最大公约数与最小公倍数(一) 第13讲最大公约数与最小公倍数(二) 第14讲 余数问题 第15讲 孙子问题与逐步约束法

第21讲 用等量代换求面积 第22讲用割补法求面积 第23讲 列方程解应用题 第24讲 行程问题(一) 第25讲 行程问题(二) 第26讲 行程问题(三) 第27讲 逻辑问题(一) 第28讲 逻辑问题(二) 第29讲 抽屉原理(一) 第30讲 抽屉原理(二)

第1讲 数字谜(一)

数字谜的内容在三年级和四年级都讲过,同学们已经掌握了不少方法。例如用猜想、拼凑、排除、枚举等方法解题。数字谜涉及的知识多,思考性强,所以很能锻炼我们的思维。

这两讲除了复习巩固学过的知识外,还要讲述数字谜的代数解法及小数的除法竖式问题。 例1 把+,-,×,÷四个运算符号,分别填入下面等式的○内,使等式成立(每个运算符号只准使

用一次):(5○13○7)○(17○9)=12。

分析与解:因为运算结果是整数,在四则运算中只有除法运算可能出现分数,所以应首先确定

“÷”的位置。

当“÷”在第一个○内时,因为除数是13,要想得到整数,只有第二个括号内是13的倍数,

此时只有下面一种填法,不合题意。(5÷13-7)×(17+9)。 当“÷”在第二或第四个○内时,运算结果不可能是整数。

当“÷”在第三个○内时,可得下面的填法:(5+13×7)÷(17-9)=12。

例2 将1~9这九个数字分别填入下式中的□中,使等式成立:□□□×□□=□□×□□=5568。 解:将5568质因数分解为5568=26×3×29。由此容易知道,将 5568分解为两个两位数的乘积

有两种:58×96和64×87,分解为一个两位数与一个三位数的乘积有六种:

12×464, 16×348, 24×232, 29×192, 32×174, 48×116。

显然,符合题意的只有下面一种填法:174×32=58×96=5568。 例3 在443后面添上一个三位数,使得到的六位数能被573整除。

分析与解:先用443000除以573,通过所得的余数,可以求出应添的三位数。由443000÷

573=773……71 推知, 443000+(573-71)=443502一定能被573整除,所以应添502。

例4 已知六位数33□□44是89的倍数,求这个六位数。

分析与解:因为未知的数码在中间,所以我们采用两边做除法的方法求解。

先从右边做除法。由被除数的个位是4,推知商的个位是6;由左下式知,十位相减后的差是1,

所以商的十位是9。这时,虽然89×96=8544,但不能认为六位数中间的两个□内是85,因为还没有考虑前面两位数。

再从左边做除法。如右上式所示,a可能是6或7,所以b只可能是7或8。

由左、右两边做除法的商,得到商是3796或3896。由3796×89=337844, 3896×89=346744 知,商是3796,所求六位数是337844。

例5 在左下方的加法竖式中,不同的字母代表不同的数字,相同的字母代表相同的数字,请你用适

当的数字代替字母,使加法竖式成立。

分析与解:先看竖式的个位。由Y+N+N=Y或Y+ 10,推知N要么是0,要么是5。如果N=5,那么

要向上进位,由竖式的十位加法有T+E+E+1=T或T+10,等号两边的奇偶性不同,所以N≠5,N=0。 此时,由竖式的十位加法T+E+E=T或T+10, E不是0就是5,但是N=0,所以E=5。

竖式千位、万位的字母与加数的千位、万位上的字母不同,说明百位、千位加法都要向上进位。因为N=0,所以I≠0,推知I=1,O=9,说明百位加法向千位进2。

再看竖式的百位加法。因为十位加法向百位进1,百位加法向千位进2,且X≠0或1, 所以R+T+T+1≥22,再由R,T都不等于9知,T只能是7或8。

若T=7,则R=8,X=3,这时只剩下数字2,4,6没有用过,而S只比F大1,S,F不可能是2,4,6中的数,矛盾。

若T=8,则R只能取6或7。R=6时,X=3,这时只剩下2,4,7,同上理由,出现矛盾;R=7时,X=4,剩下数字2,3,6,可取F=2,S=3,Y=6。所求竖式见上页右式。

解这类题目,往往要找准突破口,还要整体综合研究,不能想一步填一个数。这个题目是美国数学月刊上刊登的趣题,竖式中从上到下的四个词分别是 40, 10, 10, 60,而 40+10+10正好是60,真是巧极了!

例6 在左下方的减法算式中,每个字母代表一个数字,不同的字母代表不同的数字。请你填上适当

的数字,使竖式成立。

分析与解:按减法竖式分析,看来比较难。同学们都知道,加、减法互为逆运算,是否可以把减

法变成加法来研究呢(见右上式)?不妨试试看。 因为百位加法只能向千位进1,所以E=9,A=1,B=0。

如果个位加法不向上进位,那么由十位加法1+F=10,得F=9,与E=9矛盾,所以个位加法向上进1,由1+F+1=10,得到F=8,这时C=7。余下的数字有2,3,4,5,6,由个位加法知,G比D大2,所以G,D分别可取4,2或5,3或6,4。所求竖式是

解这道题启发我们,如果做题时遇到麻烦,不妨根据数学的有关概念、法则、定律把原题加以变换,将不熟悉的问题变为熟悉的问题。另外,做题时要考虑解的情况,是否有多个解。 练习1

1.在一个四位数的末尾添零后,把所得的数减去原有的四位数,差是621819,求原来的四位数。 解:621819÷(100-1)= 6281。

2.在下列竖式中,不同的字母代表不同的数字,相同的字母代表相同的数字。请你用适当的数字代替字母,使竖式成立:

(1) A B (2) A B A B + B C A - A C A A B C B A A C

(1)由百位加法知,A=B+1;再由十位加法A+ C=B+10,推知C=9,进而得到A=5,B=4(见上右式)。 (2)由千位加法知B=A-1,再由个位减法知C=9。因为十位减法向百位借1,百位减法向千位借1,

所以百位减法是(10+B-1)-A=A,

化简为9+B=2A,将B=A-1代入,得A=8, B=7( 见右上式)。

3.在下面的算式中填上括号,使得计算结果最大:1÷2÷3÷4÷5÷6÷7÷8÷9。

解:1÷(2÷3÷4÷5÷6÷7÷8÷9)=90720。

4.在下面的算式中填上若干个( ),使得等式成立:1÷2÷3÷4÷5÷6÷7÷8÷9=2.8。 解:1÷(2÷3)÷4÷(5÷6÷7÷8)÷9=2.8。

5.将1~9分别填入下式的□中,使等式成立:□□×□□=□□×□□□=3634。 提示:3634=2×23×79。46×79= 23×158= 3634。

6.六位数391□□□是789的倍数,求这个六位数。 提示:仿照例3。391344。 7.已知六位数7□□888是83的倍数,求这个六位数。

提示:仿例4,商的后3位是336,商的第一位是8或9。774888。

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4