《高等代数与解析几何》行列式专题练习

第二章 行列式专题练习

一、选择题

1231、行列式112的代数余子式A13的值是( ) 201k21

(A)3 (B)?1 (C)1 (D)?2 2.行列式2k0?0的充分必要条件是 ( ) 1?11(A)k?2 (B)k??2 (C)k?3 (D)k??2or 3

1x3.方程12x24?0根的个数是( ) 913(A)0 (B)1 (C)2 (D)3 4.下列构成六阶行列式展开式的各项中,取“+”的有 ( )

(A)a15a23a32a44a51a66 (B)a11a26a32a44a53a65 (C)a21a53a16a42a65a34 (D)a51a32a13a44a65a26 5. n阶行列式的展开式中,取“–”号的项有( )项

n!nn2n(n?1)(A) (B) (C) (D)

22226.若(?1)N(1k4l5)a11ak2a43al4a55是五阶行列式的一项,则k,l的值及该项的符号为( )

(A)k?2,l?3,符号为正; (B)k?2,l?3,符号为负; (C)k?3,l?2,符号为正; (D)k?3,l?2,符号为负

7.下列n(n >2)阶行列式的值必为零的是 ( )

A 行列式主对角线上的元素全为零 B 三角形行列式主对角线上有一个元素为零 C 行列式零的元素的个数多于n个 D 行列式非零元素的个数小于n个

a118.如果D?a21a12a22a32a132a112a122a222a322a132a23 = ( ) 2a33a31a23?M?0,则D1?2a21a332a31(A)2 M (B)-2 M (C)8 M (D)-8 M

1 / 6

a119.如果D?a21a12a22a32a134a112a11?3a122a21?3a222a31?3a322a132a23 ,则D1? ( ) 2a33a31a23?1,D1?4a21a334a31(A)8 (B)?12 (C)?24 (D)24

?10x111?1?110.若f(x)?,则f(x)中x的一次项系数是( )

1?11?11?1?11(A)1 (B)?1 (C)4 (D)?4

a111.4阶行列式

0a2b300b2a30b100a4 的值等于( )

00b4(A)a1a2a3a4?b1b2b3b4 (B)(a1a2?b1b2)(a3a4?b3b4) (C)a1a2a3a4?b1b2b3b4 (D)(a2a3?b2b3)(a1a4?b1b4) 12.如果

a11a21a12a22b1b2?1,则方程组 ?a12a22a11?a11x1?a12x2?b1?0 的解是( )

?a21x1?a22x2?b2?0b1 (B)x1??(A)x1?,x2?b1b2a12a22a21b2,x2?a11b1a21b2

(C)x1??b1?a12?b2?a22,x2??a11?b1?a21?b2 (D)x1??b1?a12?b2?a22,x2???a11?b1?a21?b2

?113、设A为 n阶可逆阵,且A = 2,则A = ( )

(A)2 (B)0.5 (C)2 4

>>闂傚倸鍊搁崐鎼佸磹閹间礁纾圭€瑰嫭鍣磋ぐ鎺戠倞妞ゆ帒顦伴弲顏堟偡濠婂啰绠绘鐐村灴婵偓闁靛牆鎳愰濠傗攽鎺抽崐鎰板磻閹惧墎妫柟顖嗗瞼鍚嬮梺鍝勭焿缂嶄線鐛崶顒夋晬闁挎繂妫岄幐鍛節閻㈤潧浠滄俊顖氾攻缁傚秴饪伴崼婵堫槰闂侀€炲苯澧い顏勫暣婵″爼宕卞Δ鈧〖缂傚倸鍊哥粔鏉懳涘Δ鈧悳濠氬锤濡や礁浜滈梺绋跨箰閻ㄧ兘骞忛搹鍦<缂備降鍨归獮鏍煙閸愯尙绠洪柕鍥ㄥ姌椤﹀绱掓潏銊ユ诞闁诡喒鏅犲畷姗€鎳犻鎸庡亝缂傚倸鍊风欢锟犲窗閺嶎厽鍋嬮柟鎯х-閺嗭箓鏌熼悜姗嗘畷闁稿﹦鍏橀幃妤呮偨閻ц婀遍弫顕€骞嗚閺€浠嬫煟濡櫣浠涢柡鍡忔櫅閳规垿顢欑喊鍗炴闂佺懓绠嶉崹纭呯亽婵炴挻鍑归崹鎶藉焵椤掑啫鐓愰柕鍥у瀵潙螖閳ь剚绂嶆ィ鍐┾拺闁告繂瀚悞璺ㄧ磼閺屻儳鐣烘鐐叉瀵噣宕奸锝嗘珫婵犵數鍋為崹鍫曟晝閳哄倸顕遍柨鐕傛嫹<<
12@gma联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4