在EXCEL中实现多总体方差的Bartlett齐性检验

龙源期刊网 http://www.qikan.com.cn

在EXCEL中实现多总体方差的Bartlett齐性检验

作者:朱红兵 何丽娟

来源:《首都体育学院学报》2007年第01期

摘 要:在总体服从正态分布的前提下,方差齐性与否决定了单因素多水平的模型能否采用方差分析来检验均数间的差异。主要介绍在EXCEL中,Bartlett齐性检验的自动计算工具的设计与实现。工具完成后可以重复使用,大大减少以后齐性检验计算的工作量。 关键词: 方差齐性;总体;检验;EXCEL

中图分类号: G8032 文章编号:1009-783X(2007)01-0114-03 文献标识码: A

在体育教学和运动训练等的科学实验中,对影响体育教学成绩及运动竞赛的成绩的原因的探究,一直是当代体育科研中研究的主线。例如,在运动训练中,为更加有效地提高运动成绩,通常需要考察不同的运动强度、不同的运动量和不同的运动持续时间等因素对不同的专项运动成绩的影响,目的是为了找出适合不同专项的运动强度、运动量、运动持续时间的较佳组合。又如,我们从运动系体操专业的学生中随机抽取条件相似的20名学生随机分成4组,每组5人,由4位教师施以不同的教学方法,教20个具有相当难度的体操动作,并规定每个动作的计分标准,试教一学期后举行测试,测得各组得分,见下表。现假定每组的得分服从正态分布,则这4种教学方法的效果间是否有显著性差异的问题就是我们迫切需要了解的。 如果仅仅从上例每组的总分上看,显然四种不同的教法带来了四种不同的学生得分,分值上肯定有差异,但这种差异主要是由随机误差引起的,还是主要是由于教学方法的不同而引起的,即是否有显著性差异的统计结论,还须经统计检验后才能得出。若用两个样本间均数差异的显著性检验方法来处理本类问题的话,需要做6次检验。若这样的试验安排共有N组,则需要做N(N-1)/2

次两两比较,这一方面,显然太麻烦了,另一方面,当设定两两比较时,

犯第一类错误的概率α=0.05,则N个独立样本两两比较时,每次比较不犯第一类错误的概率为0.95N(N-1)2,相应犯第一类错误的概率为1-0.95N(N-1)2,远远大于事先设定的0.05。因此,多个均数比较时不宜采用我们熟知的t检验作两两比较,应采用一种新的统计处理方法来实现。

解决这一类问题的方法是方差分析。它最早由英国统计学家费舍(R.A.Fisher)在1923年提出,最初用于生物学和农业试验方面,后于1946年由斯内德克(G.W.Snedecor)进一步加以完善。为纪念费舍的杰出贡献,又把它称为F检验。现在它在体育领域中也得到了广泛的应用。

龙源期刊网 http://www.qikan.com.cn

方差分析是在总体服从正态分布且方差齐性的假设下展开的,在满足总体正态性但方差不齐时,此法不可用,而只能改用方差不齐时两均数差异的显著性检验的方法来进行两两均数间的比较。因此,这里很有必要来考虑方差的齐性检验的问题。本文主要介绍在EXCEL中如何来实现多总体方差的Bartlett齐性检验的自动计算。

1 Bartlett方差齐性检验的方法

Bartlett法是一种可在各水平重复测定次数不等时用来检验方差齐性的方法,虽然,当各水平重复测定次数相等时,可用Cochran提供的检验方法,但Bartlett法同样适用。

2 在EXCEL中进行Bartlett方差齐性检验的方法

2.1 工作表的安排

在用Bartlett法进行方差齐性检验时,为使计算相对自动化,而且能在必要时可以扩展到更多的水平数,需要在同一个工作簿中动用两张工作表。

其中,工作表1用来存放实验结果的原始数据。工作表2用来存放中间和最后的运算结果。

2.2 原始数据清单的格式要求

在第一张工作表中,第一行从A到Z的各列中用来建立单因素相应各水平的名称,即字段名。字段名应由字母或汉字开头加EXCEL中的其它合法字符组成。考虑到后续运作的需要,字段名的长度不要过长,最好在10个字符以内。

A列中用来存放因素的第一个水平的字段名和测试值,B列中用来存放因素的第二个水平的字段名和测试值,余类推。建立的数据清单,如图1所示。需要注意的是在工作表1中除输入上述必须的数据外,不能在空白单元格中输入与实验数据无关的任何内容。

2.3 在工作表2中用Excel的公式和函数进行计算

龙源期刊网 http://www.qikan.com.cn

根据Bartlett方差齐性检验的计算公式,用Excel公式和函数计算和存放中间统计量和最后结果。从而使整个计算过程实现自动化。工作表2中的样式见图2。

需要注意的是,在工作表2第12行以上的整个区域中的许多单元格,是被用来定义存放不同的计算结果的,因此,与此无关的内容,不能在本区域中出现。 2.3.1 单因素水平数(即分组数)的确定

在计算过程中,多次用到水平数这个值,由于水平数会随着实际问题的变化而变化,为达到自动计算的目的,必须用函数来对它进行实际的测定,具体可通过函数

COUNTIF(Sheet1!A:Z,\来计算该问题的实际水平数。其中A:Z表示,由A到Z共26列和EXCEL默认的最大行组成的区域,也即测定的最大水平数定义为26。本文开发的计算工具中,定义的最大水平数为26。如果实际的水平数比这还大,可通过修改Z值使之更大即可。 2.3.2 总观测值数(各样本含量的总数)的确定

同样用函数COUNT(Sheet1!A:Z)可计算得到该问题中总观测值数。同上,如果实际的水平数比这还大,可通过修改Z值使之更大即可统计出各样本含量的总数。

在本计算工具的开发过程中,上述分组数和总观测值数的计算函数将被嵌套在其它函数中用来实现具体的功能。

2.3.3 各水平样本含量的确定

工作表1中,第一列即A列的样本含量的确定, 可用COUNT(Sheet1!A:A) 计算得到该列的观测值数。由于工作表1中的水平至少3个或3个以上,因此,须在工作表2中用多个处在同一行的连续的单元格来存放计算结果,这就带来不确定性。当预设有公式的单元格数超过实际的因素的水平数时,如不作特殊处理将在后续的计算中会带来不必要的麻烦。为了使工作表2的相应列中列出各水平的样本含量数,而对超出对应水平数的列中不显示任何信息,从而不影响后续的计算,因此,可使用IF()函数来实现上述想法,即当某列中的观测值数为0时,在工作表2的相应单元格中,不显示任何信息。考虑到其它各列的样本含量的统计方法同其是一样的,可通过使用填充句柄复制的方法实现公式的粘贴,为能得到图2所示的结果,故在工作表2的B2单元格中输入“=IF(COUNT(Sheet1!A:A)=0,\,其它各列与第2行对应单元格中的计算公式可通过向右拖曳填充句柄的方式来实现公式的录入。同前一致,在工作表2中,从B2单元格起已将计算各样本含量数的公式设置到AA列的AA2元格。这样最多可同时处理26个水平。如水平数更多时,用上法继续向右复制粘贴公式即可。 2.3.4 各样本自由度的确定

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4