2019高考数学大二轮复习专题9概率与统计第2讲综合大题部分真题押题精练(文科)

第2讲 综合大题部分

3

1. (2018·高考全国卷Ⅰ)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:

未使用节水龙头50天的日用水量频数分布表

日用水量 [0,0.1) [0.1,0.2) [0.2,0.3) [0.3,0.4) [0.4,0.5) [0.5,0.6) [0.6,0.7) 频数 1 3 2 4 9 26 5 使用了节水龙头50天的日用水量频数分布表 日用水量 [0,0.1) [0.1,0.2) [0.2,0.3) [0.3,0.4) [0.4,0.5) [0.5,0.6) 频数 1 5 13 10 16 5 (1)在下图中作出使用了节水龙头50天的日用水量数据的频率分布直方图;

(2)估计该家庭使用节水龙头后,日用水量小于0.35 m的概率;

(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表) 解析:(1)如图所示.

3

(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于0.35 m的频率为0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48,

因此该家庭使用节水龙头后,日用水量小于0.35 m的概率的估计值为0.48. (3)该家庭未使用节水龙头50天日用水量的平均数为x1=

1

×(0.05×1+0.15×3+50

3

3

0.25×2+0.35×4+0.45×9+0.55×26+0.65×5)=0.48. 该家庭使用了节水龙头后50天日用水量的平均数为

x2=×(0.05×1+0.15×5+0.25×13+0.35×10+0.45×16+0.55×5)=0.35.

估计使用节水龙头后,一年可节省水(0.48-0.35)×365=47.45(m).

2.(2018·高考全国卷Ⅱ)如图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.

3

150

为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为1,2,…,17)建立模型①:^

y=-30.4+13.5t;根据2010年至2016年的数据(时间变量t的值依次为1,2,…,7)

^

建立模型②:y=99+17.5t.

(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.

^

解析:(1)利用模型①,可得该地区2018年的环境基础设施投资额的预测值为y=-30.4+13.5×19=226.1(亿元).

^

利用模型②,可得该地区2018年的环境基础设施投资额的预测值为y=99+17.5×9=256.5(亿元).

(2)利用模型②得到的预测值更可靠. 理由如下:

(ⅰ)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=-30.4+13.5t上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线^

性模型y=99+17.5t可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.

(ⅱ)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①看到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.

(说明:以上给出了2种理由,考生答出其中任意一种或其他合理理由均可.) 3.(2018·高考全国卷Ⅲ)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:

(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由.

(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m的工人数填入下面的列联表:

超过m 不超过m

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4