屈婉玲高教版离散数学部分答案2培训资料

屈婉玲高教版离散数

学部分答案2

第七章部分课后习题参考答案

7.列出集合A={2,3,4}上的恒等关系I A,全域关系EA,小于或等于关系LA,整除关系DA.

解:IA ={<2,2>,<3,3>,<4,4>}

EA={<2,2>,<2,3>,<2,4>,<3,4>,<4,4>,<3,2>,<3,3>,<4,2>,<4,3>}

LA={<2,2>,<2,3>,<2,4>,<3,3>,<3,4>,<4,4>} DA={<2,4>}

13.设A={<1,2>,<2,4>,<3,3>} B={<1,3>,<2,4>,<4,2>}

求A?B,A?B, domA, domB, dom(A?B), ranA, ranB, ran(A?B ), fld(A-B). 解:A?B={<1,2>,<2,4>,<3,3>,<1,3>,<4,2>} A?B={<2,4>}

domA={1,2,3} domB={1,2,4} dom(A∨B)={1,2,3,4}

ranA={2,3,4} ranB={2,3,4} ran(A?B)={4}

A-B={<1,2>,<3,3>},fld(A-B)={1,2,3} 14.设R={<0,1><0,2>,<0,3>,<1,2>,<1,3>,<2,3>}

求R?R, R-1, R?{0,1,}, R[{1,2}] 解:R?R={<0,2>,<0,3>,<1,3>}

R-1,={<1,0>,<2,0>,<3,0>,<2,1>,<3,1>,<3,2>}

R?{0,1}={<0,1>,<0,2>,<0,3>,<1,2>,<1,3>} R[{1,2}]=ran(R|{1,2})={2,3}

16.设A={a,b,c,d},R1,R2为A上的关系,其中

R1=?a,a,a,b,b,d?

R2??a,d,b,c,b,d,c,b23求R1oR2,R2oR1,R1,R2。

?

解: R1?R2={,,} R2?R1={}

R12=R1?R1={,,} R22=R2?R2={,,} R23=R2?R22={,,}

36.设A={1,2,3,4},在A?A上定义二元关系R,

?,?A?A ,〈u,v> R ?u + y = x + v. (1)证明R 是A?A上的等价关系. (2)确定由R 引起的对A?A的划分. (1)证明:∵R ?u+y=x-y

R?u-v=x-y

??A?A ∵u-v=u-v ∴R ∴R是自反的

任意的,∈A×A 如果R ,那么u-v=x-y

∴x-y=u-v ∴R ∴R是对称的

任意的,,∈A×A 若R,R 则u-v=x-y,x-y=a-b ∴u-v=a-b ∴R ∴R是传递的 ∴R是A×A上的等价关系

(2) ∏={{<1,1>,<2,2>,<3,3>,<4,4>}, {<2,1>,<3,2>,<4,3>}, {<3,1>,<4,2>},

{<4,1>}, {<1,2>,<2,3>,<3,4>}, {<1,3>,<2,4>}, {<1,4>} }

41.设A={1,2,3,4},R为A?A上的二元关系, ?〈a,b〉,〈c,d〉?

A?A ,

〈a,b〉R〈c,d〉?a + b = c + d (1) 证明R为等价关系. (2)求R导出的划分. (1)证明:?

a+b=a+b ∴R ∴R是自反的

任意的,∈A×A 设R,则a+b=c+d

∴c+d=a+b ∴R ∴R是对称的

任意的,,∈A×A 若R,R 则a+b=c+d,c+d=x+y ∴a+b=x+y ∴R ∴R是传递的

∴R是 A×A上的等价关系

(2)∏={{<1,1>}, {<1,2>,<2,1>}, {<1,3>,<2,2>,<3,1>},

{<1,4>,<4,1>,<2,3>,<3,2>}, {<2,4>,<4,2>,<3,3>}, {<3,4>,<4,3>}, {<4,4>}}

43. 对于下列集合与整除关系画出哈斯图:

(1) {1,2,3,4,6,8,12,24}

(2) {1,2,3,4,5,6,7,8,9,10,11,12} 解:

24884211263126319511

10742

(1) (2)

45.下图是两个偏序集的哈斯图.分别写出集合A和偏序关系Rp的集合表达式.

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4