福建省南安市侨光中学2013届高三上学期第三次月考数学(理)试卷

2013届南安侨光中学高三第三次月考数学科测试卷(理科)

命题:黄祥瑜

审题:林凤灵

考试范围:集合与函数概念、不等式、概率统计、数列和解三角形、导数、解析几何等 本试卷由两部分组成:选择题(60分)、非选择题(90分) 考试时间:120分钟 满分:150分

第一部分 选择题(共60分)

一、选择题(每小题有且仅有一个正确的选项,每小题5分,共60分)

21、不等式x?x?0的解集为M,f(x)?ln(1?|x|)的定义域为N,则M?N?( )

A.[0,1)

B.(0,1)

C.[0,1]

D.(?1,0]

2、已知a?0,设i为虚数单位,

a?i?2,那么实数a=( ) iA.1 B.2 C.2 D.3 3、已知x?R,条件p:0?x?A.充分不必要条件 C.充要条件

1,条件q:x?1,则p是q的( ) 2B.必要不充分条件 D.既不充分又不必要条件

4、口袋里有2个白球和3个黑球,从中摸出2个球,下列事件符合互斥且不对立的是( ) A.“至少摸得1个白球”和“至多摸得1个黑球” B.“摸得的球颜色相同”和“恰好摸得1个白球” C. “恰好摸得1个白球”和“摸得2个黑球” D.“至少摸得1个黑球”和“摸得2个白球” 5、设等差数列{an}中,Sn是{an}的前n项和,a1??11,A.11 6、函数y?

A. B. C. D. y

B.?11

C.10

S10S8??2,则S11=( ) 108 D.?10

ln|x|的大致图象为( ) xy x o o x y x o y o x 3x2y2x2y27、设椭圆2?2?1(a?b?0)的离心率等于,那么双曲线2?2?1离心率等于

2abab( ) A.

5 2 B.

5 4

C.2

D.2

8、二项式(2x?A.120

16)的展开式中的常数项为( ) x B.?120

xC.160

9、设e是自然对数的底,函数y?e,y?x1,的图形如右, x D.?160 y 1则函数f(x)?e?的零点所在区间是( )

x113A.(0,) B.(,1) C.(1,)

222y?e 1 xy?1

xx D.(,1) M 4 P 2 N 3210、如图,设幂函数y?f(x)的图象过点P(2,4),在矩形ONPM 内任取一个点,那么该点落在以曲线y?f(x)、直线x?2和 x轴所围成的图形(阴影部分)内部的概率是( ) A.

1 12 B.

1 6 C.

1 3O D.

2 511、现有标号为1、2、3、4的四张卡片和标号为1、2的两个盒子,将所有的卡片放入盒

子中,使得每个盒子都有卡片;那么盒子内的卡片数都不小于该盒子标号的概率是( )

5142 B. C. D. 725312、已知a,b为不相等实数,设定义在R上的函数f(x)的导函数为f'(x),命题:

x??x2f(x1)??f(x2))?“?x1,x2?(a,b),??0,且x1?x2,都有f(1”为真,

1??1??A.

那么下列4个结论中正确的个数是( )

①f(x)在区间(a,b)内必有极大值; ②f(x)在区间(a,b)内单调增; ③必定存在唯一的x0?(a,b),使得f'(x0)?f(a)?f(b);

a?b

D.4

④导函数f'(x)在区间(a,b)上单调递减. A.1

B.2

C.3

第二部分 非选择题(共90分)

二、填空题(每题5分,共25分)

13、抛物线y?x的焦点和准线的距离等于_*******_.

2?1x?()?1,(x?0)14、设e是自然对数的底,f(x)??2,则f(x)?1的所有解的和是_****_.

?,(x?0)?lnx15、仔细观察下列表达式:

2?22?2?; 553?33?3?; 10104?设

4455?4??5?;5?;…… 17172626nnn?8?是最简分数且有8?,那么m?n?_*******_. mmm?x?1?16、设常数a?1,动点M(x,y)满足?y?1,目标函数z?x?ay取值范围是_*****_.

?x?y?1?17、对于?ABC内的任何一点M,为了确定M的具体位置f(M),采用如下记法:

f(M)?(x,y,z),x,y,z分别表示?MBC,?MCA,?MAB的面积,

现有?ABC满足AB·AC???????23且?A?30?,设M是?ABC内的一点

(不在边界上),当f(M)?(x,y,),那么

1214?的最小值为_*******_. xy三、解答题(在答题卡上写出具体解题过程,共65分) 18、(本小题满分12分)

设正项数列{an}的前n项和为Sn,a1?1且数列Sn是公差为1的等差数列 ....

??⑴求Sn和通项公式an; ⑵通过公式bn?

Sn?ann?c构造一个新的数列{bn},当{bn}是等差数列时,求实数c.

19、(本小题满分13分)

??(sinA,),?设△ABC的内角A,B,C所对的边a,b,c,mn?(3,sinA?3cosA)

12

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4