۾ѧߺҵİ棩ϰο
1֪һļ۸Ϊ80Ԫһݿϵ¼͵ļ۸Ϊ20Ԫij߹ƷЧľϣһݿϵ¼ͶԳıMRSǶ٣
⣺ƷıMRSĶ幫ʽ,Խһݿϵ¼ͶԳıд: MRSXY???Y?X
:Xʾϵ¼͵ķ;Yʾļ; MRSxyʾάЧˮƽǰ, һݿϵ¼ʱҪij
ڸʵֹƷЧʱھ MRSxy =Px/Py
MRSxy =20/80=0.25
Чľϣ߹һݿϵ¼ͶԳıMRSΪ0.25
2 ijߵľͼ1-9ʾУOX1OX2ֱʾƷ1Ʒ2߶ABΪߵԤߣUΪߵߣEΪЧľ㡣֪Ʒ1ļ۸P1=2Ԫ
1ߵ룻 (2)Ʒ2ļ۸P2 (3)дԤߵķ̣ (4)Ԥߵбʣ (5)EMRS12ֵ
⣺1ͼеĺؾʾߵȫƷ1Ϊ30λ֪P1=2ԪԣߵM=2Ԫ30=60Ԫ
2ͼеݽؾʾߵȫƷ2Ϊ20λɣ1֪M=60ԪԣƷ2ļ۸P2=M/20=60/20=3Ԫ
3ԤߵһʽΪ
P1X1+P2X2=M
ԣɣ12ɽԤ߷̾дΪ2X1+3X2=60
43еԤ߷̽һΪX2=-2/3 X1+20ԤߵбΪ2/3
5ЧľEϣMRS12=P1/P2ߵбʵľֵMRSԤߵбʾֵP1/P2ˣڴMRS12=P1/P2 = 2/3
X2 A B U 20 E 10 O 10 20 X1 30
3 뻭¸λ߶ƷȺȲ裩ߣͬʱԣ2ͣ3ֱдBCЧú
1AϲȿȣԺȲνϲи౭ĿȣӲжٱȲ衣
2BϲһȺһȲһȣϲֻȿȣߵֻȲ衣
3CΪκ£1Ⱥ2Ȳġ 4DϲȲ裬ȿȡ
𣺣1⣬AԣȲƷˣȲӰAЧˮƽAͼ
2⣬BԣȺȲȫƷЧúU=min{ X1X2}Bͼ
3⣬CԣȺȲȫƷЧúU=2 X1+ X2Cͼ
4⣬DԣƷDͼ
4֪ijÿƷ1͵Ʒ2Ϊ540ԪƷļ۸ֱΪP1=20
ԪP2=30ԪߵЧúΪU?3X1X22ÿ깺ƷӦǶ٣ÿлõЧǶ٣ ⣺ߵЧľ MU1/MU2=P1/P2
УU?3X1X22ɵã
MU1=dTU/dX1 =3X22 MU2=dTU/dX2 =6X1X2 ǣУ
3X22/6X1X2 = 20/30
X2=4/3X1 (1)
1ʽԤԼ20X1+30X2=540ã X1=9X2=12
ˣÿ깺ƷӦΪU=3X1X22=3888
d5ijƷгֻABߣǵΪQA?20?4PdQB?30?5P
1гߵг
(2)ݣ1ߵߺгߡ