福建省2018年高中数学联赛(福建省赛区)预赛试题Word版含答案

?9911 ?,?2n?1?100,?n?22n?110?使得Tn?

9成立的最小正整数n的值为50. 2012.解:设F1PF2的垂心为?1??c,0?,F2?c,0?.由?F?265??3,?3??,得F1H?PF2. ???kF1H?kPF2512453????1,?c2?,解得c2?1.

932626?c?c33?由点P??26?24122222C??1,1a?b?c?1在椭圆上,得.结合,解得 a?4,b?3.?22?3?9ab??x2y2?1. ?椭圆C的方程为?43(2)由(1),知A??2,0?,F2?1,0?

若l斜率不存在,则由对称性,k1?k2?0,不符合要求 若l斜率存在,设为k,则l的方程为y?k?x?1?

?y?k?x?1??2222由?x2y2,得?4k?3?x?8kx?4k?12?0??①

?1???438k24k2?12,x1?x2?设D?x1,y1?,E?x2,y2?,则x1?x2? 224k?34k?3?k1?k2?k?x1?1?k?x2?1??y1y33??2???k?1??1?? x1?2x2?2x1?2x2?2x2?2??x1?2?3?x1?x2?4???2k2?1?1?k??2??k?2??? ???2x?2x?2kk??2??????1又k1?k2??

13.解:(1)连结PD,QD

- 5 -

1,因此k?2,直线l的方程为:y?2?x?1?,即2x?y?2?0. 2

?P,Q分别为?ABD,?ADC的外心, ?PQ为线段的AD垂直平分线. 1??APQ=?APD??ABD??ABC,

21??AQP=?AQD??ACD??ACB.

2??APQ∽?ABC.

(2)连结OA,OB,OP,PB,QC,延长OQ与AC相交于点F,由O,P,Q分别为

?ABC,?ABD,?ADC的外心,知OP,OQ,PQ分别是线段AB,AC,AD的垂直平分线.

??APB??APD??PBD?2??ABD??BAD??2?ADC??AQC.

又?OBP??OAP,?AQF?11?AQC??APB??AQC, 22?A,P,O,Q四点共圆,?OAP??OQP.

又EO?PQ,DA?PQ,?EO//DA,?OEC??ADC?1?APB??BPO 2?P,B,E,O四点共圆,?OEP??OBP.

设EO,QO的延长线分别与PQ,PE相交于M,N,则?OEP??OBP??OAP??OQP

?M,N,E,Q四点共圆,

又QO?PQ??QNE??QME?90

0?QO?PE.

14.解:(1)设g?x???x?2?f?x??mx?2,则g?x???x?2?e?2mx?2

2xx?0时,不等式?x?2?f?x??mx2?2?0恒成立?x?0时,g?x??0恒成立.

- 6 -

?g??x??ex??x?2?ex?2m??x?1?ex?2m,g???x??ex??x?1?ex?xex

?x?0时,g???x??xex?0,g??x???x?1?ex?2m在区间?0,???上为增函数.

另由g?2??4m?2?0,知m??① 若?1. 211?m?,则g??0????1?2m,g??2??e2?2m?0 22此时,g??x?在区间?0,2?内有唯一零点,设为x0,则0?x?x0时,g??x??0

11?g?x?在区间?0,x0?上为减函数,g?x0??g?0??0.因此,??m?不符合要求.

221② 若m?,则x?0时,g??x??g??0???1?2m?0,此时,g?x?在?0,???上为增函

2数.

?x?0时,g?x??g?0??0.因此,m?由①、②,得m的取值范围为?,???.

1符合要求. 2?1?2??(2)?x1,x2是函数f?x??e?mx的两个零点,

x?ex1?mx1,ex2?mx2,m?x1?x2??ex1?ex2,m?x1?x2??ex1?ex2.

不妨设x1?x2,易知m?0,联立上述两式,消m,得

x1?x2??x1?x2??ex1?ex2?ex1?ex2??x1?x2??ex?x12?1?ex1?x2?1

又由(1)知,对m?1x,当x?0时,g?x???x?2?e?2mx?2?0恒成立. 2?当x?0时,?x?2?ex?x?2?0恒成立.

xxex?x?2ex?2?x?2?e??x?2??2???0. ?当x?0时,xxx?e?1??e?1??e?1?x?ex?1??x1?x2?2??x1?x2??ex?x12?1?ex1?x2?1?2?0,x1?x2?2;

当x1?x2时,同理可得:x1?x2?2,?x1?x2?2. 15. 解:记minA1,A2,?A20,B1,B2,?B20???t

- 7 -

不妨设A1?t,Ai?Bi??,i?1,2,?k;Ai?Bj??,j?k?1,k?2,?20. 设ai?A1?Bi??,i?1,2,?k.

?对任意的1?i?j?20,都有Bi?Bj??, ?a1,a2,?ak互不相同,A1?k,即t?k.

?对任意的1?i?20,1?j?20,若Ai?Bj??,则Ai?Bj?18, ?当j=k?1,k?2,?20时,A1?Bj?A1?Bj?18

即当j=k?1,k?2,?20时,Bj?18?t.

?M?B1?B2???B20?B1?B1???Bk?Bk?1???B20?kt??20?k??18?t??360?2kt?18k?20t?180?2?k?10??t?9?

若t?9,则k?t?9,?M?180?2?k?10??t?9??180 若t?10,则M?20t?200

?总有M?180

另一方面,取Ai?Bi??9?i?1??1,9?i?1??2,?,9?i?1??9?,i?1,2,?,20,则M?A1?A2???A20?B1?B2???B20??1,2,?,180?符合要求. 此时,M?180.

综上所述,集合M的元素个数的最小值为180.

- 8 -

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4