专题强化训练(十五)
一、选择题
1.(2019·资阳诊断)在数列{an}中,a1=a2=1,an+2=
??an+2,n是奇数,?则数列{an}的前20项和为( ) ??2an,n是偶数
A.1121 C.1123
B.1122 D.1124
[解析] 由题意可知,数列{a2n}是首项为1,公比为2的等比数列,数列{a2n-1}是首项为1,公差为2的等差数列,故数列{an}的前1×?1-210?10×920项和为+10×1+2×2=1123.选C.
1-2
[答案] C
2
2.(2019·石家庄一模)已知正项数列{an}中,a1=1,且(n+2)an+1
2
-(n+1)an+anan+1=0,则它的通项公式为( )
1
A.an=
n+1n+2
C.an=2
2
B.an= n+1D.an=n
2
[解析] 因为(n+2)a2n+1-(n+1)an+anan+1=0,所以[(n+2)an+1
-(n+1)an]·(an+1+an)=0.又{an}为正项数列,所以(n+2)an+1-(n+an+1n+11)an=0,即a=,
n+2n
anan-1a2nn-122
则当n≥2时,an=··…·a1=··…·1=.a1·3·an-1an-2n+1nn+12又∵a1=1也适合,∴an=,故选B.
n+1
[答案] B
3.(2019·福建三明联考)在数列{an}中,a1=1,a2=3,且an+1an
-1
=an(n≥2),则a2019的值为( )
A.3 1C.3
B.1 D.32015
[解析] (归纳猜想法)由已知,a1=1,a2=3,且an+1an-1=an(n≥2),则a1a3=a2,从而a3=3,又a2a4=a3,∴a4=1,同理a511
=3,a6=3,a7=1,a8=3,那么数列{an}为周期数列,且周期为6,∴a2019=a3=3,故选A.
[答案] A
4.(2019·郑州一中摸底测试)设Sn是数列{an}的前n项和,且a1
an+1
=-1,=S,则S10=( )
Sn+1n
1A.10 C.10
1B.-10 D.-10
an+1
[解析] 由=S,得an+1=SnSn+1.又an+1=Sn+1-Sn,所以Sn+
Sn+1n
?1?111??-=-1,所以数列S是以S=a=-1为首1-Sn=Sn+1Sn,即?n?Sn+1Sn11
1
1
项,-1为公差的等差数列,所以S=-1+(n-1)·(-1)=-n,所以
n11=-10,所以S=-10S1010,故选B.
[答案] B
5.(2019·湖南岳阳一模)已知Sn为数列{an}的前n项和,若a1=2111且Sn+1=2Sn,设bn=log2an,则bb+bb+…+bb的值是( )
122320182019
4037
A.2019 2018C.2019
4035B.2018 2017D.2018 [解析] 由Sn+1=2Sn可知,数列{Sn}是首项为S1=a1=2,公比为2的等比数列,所以Sn=2n.当n≥2时,an=Sn-Sn-1=2n-2n-1=
2
n-1
??1,n=1,111
.bn=log2an=?当n≥2时,==-
bb?n-1?nn-1?nn+1?n-1,n≥2,
111111111
n,所以b1b2+b2b3+…+b2018b2019=1+1-2+2-3+…+2017-201814035
=2-2018=2018.故选B.
[答案] B
6.(2019·广东六校联考)已知数列{an}满足a1+2a2+3a3+…+4nnan=(2n-1)·3n.设bn=a,Sn为数列{bn}的前n项和,若Sn<λ(λ为常
n
数,n∈N*),则λ的最小值是( )
3
A.2 31C.12
9B.4 31D.18 [解析] a1+2a2+3a3+…+nan=(2n-1)·3n,①
当n≥2时,a1+2a2+3a3+…+(n-1)an-1=(2n-3)·3n-1,② ①-②得,nan=4n·3n-1(n≥2),即an=4·3n-1(n≥2).当n=1时,
??3,n=1,a1=3≠4,所以an=? n-1
?4×3,n≥2,?
?
b=?n
?3
n
4
3,n=1,
n-1,n≥2.
423n1123n
所以Sn=3+3+32+…+n-1=3+30+31+32+…+n-1,③
33n-1n11123
3Sn=9+3+32+33+…+3n-1+3n,④
11-3n
221111n2n
③-④得,3Sn=9+30+3+32+…+n-1-3n=9+1-3n, 3
1-3