罗尔定理、拉格朗日、柯西中值定理、洛必达法则与导数的应用

习题3-4

★1.证明函数

y?x?ln(1?x2)单调增加。

知识点:导数的应用。

思路:利用一阶导数符号判断函数的单调性是常用的方法。在某个区间I上,f?(x)?0(f?(x)?0),

f(x)在I单调增加(减少)。

2x(1?x)2??0(仅在x?1处y??0)证明:∵y??1?, 221?x1?x∴

y?x?ln(1?x2)在(??,??)内是单调增加的。

★2.判定函数

f(x)?x?sinx(0?x?2π)的单调性。

解:∵f?(x)?1?cosx?0(仅在x?π处f?(x)?0),

f(x)?x?sinx(0?x?2π)是单调增加的。

★★3.求下列函数的单调区间:

(1)

y?1382x?x2?3x?1; (2)y?2x?(x?0); (3)y?x?3x23x3;

(4)

y?ln(x?1?x2); (5)y?(1?x)x; (6)y?2x2?lnx。

知识点:导数的应用。

思路:利用一阶导数符号判断函数的单调性。求函数的单调区间,用导数为零的点及不可导点,将定义域

划分成若干个区间,然后在每个区间上判断函数的单调性;如果划分定义域的点有两个或以上,可列表讨论,使得思路更清晰一些。

解:(1) y?得x113x?x2?3x?1的定义域为(??,??);令y??x2?2x?3?0, 3??1,x2?3。列表讨论如下:

x (??,?1) ? ↗ ?1 0 (?1,3) - ↘ 3 0 (3,??) ? ↗ f?(x) f(x) 由上表可知,y13x?x2?3x?1在(??,?1)、(3,??)内严格单增,而在(?1,3)内严格单减。 38(2) 在(0,??)内,令y??2?2?0,得x?2;

x?当 x?(0,2)时,有

y??0;当 x?(2,??)时,有y??0;

y?2x?8(x?0)在(0,2)内严格单增,在(2,??)内严格单减。 x223(3)y?x?x3得x

22?12(3x?1)3的定义域为(??,??);令y???x??0,

3333x?1;x?0为不可导点。列表讨论如下:

x (??,0) ? ↗ 0 0 (0,1) - ↘ 1 0 (1,??) ? ↗ f?(x) f(x) 由上表可知,

y?2x?3x23在(??,0)、(1,??)内严格单增,而在(0,1)内严格单减。

(4)

y?ln(x?1?x2)的定义域为(??,??),

1x?1?x2y??(1?x1?x2)?11?x2?0,

y?ln(x?1?x2)在(??,??)内严格单增。

y?(1?x)x的定义域为[0,??),∵y??(x?x)??1?32(5)

3x?0, 2∴

y?(1?x)x在[0,??)上严格单增。

214x2?11?0,得x?; (6)y?2x?lnx的定义域为(0,??),令y??4x??xx211)时,y??0;当x?(,??)时,y??0; 22112∴y?2x?lnx在(0,)内严格单增,在(,??)内严格单减。

22当x?(0,★★4.证明下列不等式:

1x?1?x; (2)当x?4时,2x?x2; 2π13(3)当x?0时,(1?x)ln(1?x)?arctanx; (4)0?x?时,tanx?x?x。

23(1) 当x?0时,1?知识点:导数的应用或者泰勒公式的应用。

思路:利用泰勒公式可以证明一些不等式(见习题3-3第10题),利用函数单调性也是证明不等式常用的

方法。

解:(1)方法一:令f(x)?1?1x?1?x, 2则当x?0时,f?(x)?1111??(1?)?0, 221?x21?x∴

f(x)?1?1x?1?x在[0,??)上严格单增;从而f(x)?f(0)?0, 2即1?1x?1?x,结论成立。 2方法二:由泰勒公式,得

111f(x)?1?x?1?x?1?x?(1?x?222∴

x28(1?ξ)32)?x28(1?ξ)32(0?ξ, ?x)

f(x)?x28(1?ξ)32?0,从而得1?1x?1?x,结论成立。 2(2)方法一:令

f(x)?2x?x2,则当x?4时,f?(x)?2xln2?2x,

f??(x)?2xln22?2?f??(4)?16ln22?2?(ln42)2?2?(lne2)2?2?0,

f?(x)?2xln2?2x在(4,??)内严格单增,

f?(x)?2xln2?2x?f?(4)?16ln2?4?4(ln16?1)?0,

从而∴

f(x)?2x?x2在(4,??)内严格单增,在(4,??)内f(x)?2x?x2?f(4)?8?0,

x∴2?x2,结论成立。

注:利用f??(x)的符号判断f?(x)的单调性,利用f?(x)的单调性判断其在某区间上的符号,从而得出

f(x)在某区间上的单调性,也是常用的一种方法。

方法二:令f(x)?xln2?2lnx,

当x∴

?4时,f/(x)?ln2?2111?ln2??ln4??0, x222f(x)?xln2?2lnx在(4,??)内严格单增,

∴∴ef(x)?xln2?2lnx?f(4)?4ln2?2ln4?0,从而有,xln2?2lnx,

xln2?e2lnx,即2x?x2,结论成立。 f(x)?(1?x)ln(1?x)?arctanx,

(3)令则当x?0时有f?(x)?ln(1?x)?1?1, ?0(仅在x?0时,f?(x)?0)21?x∴

f(x)在[0,??)上严格单增,从而有f(x)?f(0)?0,

x)ln(1?x)?arctanx,结论成立。

?tanx?x,则当0?x?即(1?π22时,有g?(x)?secx?1?tanx?0 2ππ从而g(x)?tanx?x在(0,)内严格单增,∴g(x)?g(0)?0,即在(0,)内tanx?x;

2213再令f(x)?tanx?x?x,

3π2222则当0?x?时,f?(x)?secx?1?x?tanx?x?0,

213π从而f(x)?tanx?x?x在(0,)内严格单增,∴f(x)?f(0)?0,

23π13即在(0,)内tanx?x?x,结论成立。

23★★★5.试证方程sinx?x只有一个实根。

(4)令g(x)知识点:导数的应用。

思路:利用导数的符号判断函数的单调性,进而讨论方程的根是常用的方法。 解:易知,sin0?0,即x?0是方程的一个根;

令∴

, f(x)?x?sinx,则f?(x)?1?cosx?0(仅在x?2kπ(k?Z)处f?(x)?0)

f(x)?x?sinx在(??,??)内严格单增,从而f(x)只有一个零点,

即方程sinx?x只有一个实根。

f(x)?x?sinx。

★★6.单调函数的导函数是否必为单调函数?研究例子:

知识点:导数的应用。

思路:利用一阶导数符号判断单调性,从而证明结论。 解:单调函数的导函数不一定为单调函数。

∵∴而

f?(x)?1?cosx?0(仅在x?(2k?1)π(k?Z)处f?(x)?0), f(x)?x?sinx在(??,??)内严格单增;

f?(x)?1?cosx在(2kπ,(2k?1)π)内严格单减,在((2k?1)π,2kπ)内严格单增,从而在

(??,??)上不单调。

★★7.求下列函数图形的拐点及凹凸区间:

(1)

y?x?1x(x?0); (2)y?x?2 ; (3) y?xarctanx; xx?1(4)

y?(x?1)4?ex; (5) y?ln(x2?1); (6)y?earctanx 。

知识点:导数的应用。

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4