(3)△POO1在点P的运动过程中,是否能成为以OO1为腰的等腰三角形,如果能,试求出此时n的值;如果不能,请说明理由. P
图11
备用图
D
C A
O
B
A
O
B
2018年普陀区初三数学二模参考答案及评分说明
一、选择题:(本大题共6题,每题4分,满分24分)
1.(B); 2.(C); 3.(A); 4.(C); 5.(D); 6.(B). 二、填空题:(本大题共12题,每题4分,满分48分) 7.
23xy; 32?3; y8. x?3;
9. 4.027?108 ; 12. y?x2等;
10. y?11.>;
13.6; 14.
2 ; 1115.315; 18.(?5,?1?16.2a?b;
2三、解答题
17.;
11). 2(本大题共7题,其中第19---22题每题10分,第23、24题每题12分,第25题14分,满分78分)
x+2x2x?2g?19.解:原式? ··············· (3分) x?x?2?2(x?2)?x?2?x1 ······················ (2分) ?x?2x?2x?1. ························· (1分) ?x?2?当x?2?2时,原式?2?2?1 ·················· (1分)
2?2?22?3 ··················· (1分) 2 ??2?32. ·················· (2分) 220.解:由①得,x≥-2.························ (3分)
由②得,x<3. ························∴原不等式组的解集是?2≤x<3. ···············所以,原不等式组的整数解是?2、?1、0、1、2. ········21.解:
(1)∵DE⊥AB,∴?DEA?90?
又∵,∴DE?AE. ······················在Rt△DEB中,?DEB?90?,tanB?34,∴DEBE?34. ·······设DE?3x,那么AE?3x,BE?4x.
∵AB?7,∴3x?4x?7,解得x?1. ···············∴DE?3. ··························(2) 在Rt△ADE中,由勾股定理,得AD?32. ···········同理得BD?5. ·························在Rt△ABC中,由tanB?34,可得cosB?45.∴BC?285. ····∴CD?35. ··························∴cos?CDA?CDAD?210. ··················· 即?CDA的余弦值为210. 22.解:
(1)x?0的实数; ··························(2)?1; ······························3分) 2分) 2分)
1分) 1分) 2分) 1分) 1分)
1分) 1分) 1分) 1分) 2分) 2分)
( ( ( ( ( ( ( ( (
( ( (
( ((3)图(略); ····························· (4分) (4)图像关于y轴对称; 图像在x轴的上方;
在对称轴的左侧函数值y随着x的增大而增大,在对称轴的右侧函数值y随着的增大而减小;
函数图像无限接近于两坐标轴,但永远不会和坐标轴相交等. ······ (2分) 23.证明:
(1)∵ AD∥BC,DE∥AB,∴四边形ABED是平行四边形. ······ ∵FG∥AD,∴FGCFAD?CA. ···················· 同理
EFAB?CFCA . ························ 得FGAD=EFAB
∵FG?EF,∴AD?AB. ···················· ∴四边形ABED是菱形. ····················· (2)联结BD,与AE交于点H.
∵四边形ABED是菱形,∴,BD⊥AE. ············· 得?DHE?90o .同理?AFE?90o.
∴?DHE=?AFE. ······················· 又∵?AED是公共角,∴△DHE∽△AFE. ············ ∴EHEF?DEAE. ························· ∴12AE2?EFgED. ······················· 24.解:
(1) 由直线y?kx?3经过点C?2,2?,可得k??12. ··········· 由抛物线y??1x2?bx?742的对称轴是直线x?2,可得b?1. ····· (2) ∵直线y??12x?3与x轴、y轴分别相交于点A、B,
∴点A的坐标是?6,0?,点B的坐标是?0,3?. ············ 2分)
1分) 1分) 1分) 1分) 2分) 1分) 1分)
1分) 1分) 1分)
1分) 2分)
((((( ((((((((?9?∵抛物线的顶点是点D,∴点D的坐标是?2,?. ·········· (1分)
?2?∵点G是y轴上一点,∴设点G的坐标是?0,m?. ∵△BCG与△BCD相似,又由题意知,?GBC??BCD,
∴△BCG与△BCD相似有两种可能情况: ·············· (1分) ①如果
3?m5BGBC,那么,解得m===1,∴点G的坐标是?0,1?. (1分)
5CBCD523?m51BGBC?1?,那么,解得m=,∴点G的坐标是?0,?. (1分) ==52CDCB5?2?2②如果
?1?综上所述,符合要求的点G有两个,其坐标分别是?0,1?和?0,? .
?2?9??9??(3)点E的坐标是??1,?或?2,?. ················· (2分+2分)
4??2?? 25.解:
(1)过点O作OH⊥CD,垂足为点H,联结OC.
在Rt△POH中,∵sinP=,PO?6,∴OH?2. ········· (1分) ∵AB=6,∴OC=3. ······················ (1分) 由勾股定理得 CH?5. ····················· (1分)
∵OH⊥DC,∴CD?2CH?25. ··············· (1分) (2)在Rt△POH中,∵sinP=,PO =m,∴OH=221313m. ········ (1分) 3?m?在Rt△OCH中,CH=9???. ················ (1分)
?3?m??在Rt△O1CH中,CH=36??n??. ·············· (1分)
3??22m?3n2?81??m?可得 36??n??=9???,解得m=. ········· (2分)
332n????(3)△POO1成为等腰三角形可分以下几种情况:
22● 当圆心O1、O在弦CD异侧时
3n2?81①OP=OO1,即m=n,由n=解得n=9. ········· (1分)
2n即圆心距等于⊙O、⊙O1的半径的和,就有⊙O、⊙O1外切不合题意舍去.(1分) ②O1P=OO1,由(n?m2m3)?m2?(23)=n, 解得m=233n,即23n=n2?812n,解得
n=9515. ········· 当圆心O、O在弦CD同侧时,同理可得 m=81?3n2●12n.
2∵?POO81?3n91是钝角,∴只能是m?n,即n=2n,解得n=55. ··综上所述,n的值为9955或515.
1分) 2分)
( (