西安石油大学
1 有限元的基础理论
有限单元法是20世纪50年代以来随着电子计算机的广泛应用而发展起来的有一种数值解法。有限元分析(FEA,Finite Element Analysis)的基本概念是用较简单的问题代替复杂问题有限元分析后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。
有限元法的基本思路和基本原则以结构力学中的位移法为基础,把复杂的结构或连续体看成有限个单元的组合,各单元彼此在节点处连接而组成整体。把连续体分成有限个单元和节点,称为离散化。先对单元进行特性分析,然后根据各节点处的平衡和协调条件建立方程,综合后作整体分析。这样一分一合,先离散再综合的过程,就是把复杂结构或连续体的计算问题转化为简单单元的分析与综合的问题。因此,一般的有限元解法包括三个主要步骤:离散化、单元分析、整体分析。 (1)离散化
一个复杂的弹性体可以看作由无限个质点组成的连续体。为了进行解算,可以将此弹性体简化为有限个单元组成的集合体,这些单元只在有限个节点上铰接,因此,这集合体只具有有限个自由度,这就为解算提供了可能。有无限个质点的连续体转化为有限个单元的集合体,就称为离散化。 (2)单元分析
单元分析首先要进行单元划分。在工程结构中,一般采用四种类型的基本单元,即标量单元、线单元(杆、梁单元)、面单元和体单元。四种基本单元的若干例子及各单元节点自由度(节点位移)表示在图(1-1)中。而单元划分一般注意下面几点:
一、从有限元本身来看,单元划分的越细,节点布置得越多,计算的结果越精确。但计算时间和计算费用的增加。所以在划分单元时对应兼顾这两个方面。
二、在边界比较曲折,应力比较集中,应力变化较大的地方,单元应划分的细点,而在应力变化平缓处单元划分的大些。单元由小到大应逐渐过渡。
三、对于三角形单元,三条边长应尽量接近,不应出现钝角,以免计算出现较大的偏差。对于矩形单元,长度和宽度也不应相差过大。
1
西安石油大学
四、任意一个三角形单元的角点必须同时也是相邻单元边上的角点,而不能是相邻单元边上的内点。划分其他单元时也应遵循此原则。
五、如果计算对象具有不同的厚度或不同的弹性系数,则厚度或弹性系数突变之处应是单元的边线。 (3) 整体分析
整体分析就是建立各单元之间和整体结构之间的联系,建立起整体刚度矩
e?k???k阵:先对各个单元求出单元刚度矩阵,然后将其中的每个子块ij送到整体
刚度矩阵中相应位置,在同一位置上若有几个单元的相应子块送到,则进行迭加以得到整体刚度矩阵的子块从而形成整体刚度矩阵?k?。然后,加入载荷向量?P?和边界条件,再根据整体结构矩阵可以求出整体结构的节点力向量和节点位移向量之间的关系。
整体刚度矩阵的建立是根据任一点中的第j个节点上的节点力等于该单元三个节点i,j,m的节点位移在节点j上的节点力之迭加。而在整体结构中一个节点往往为几个单元所共有,则在这个节点上的节点力就应该是:共有这节点的几个单元的所有节点位移在该节点上引起的节点力之迭加。 (4)有限元分析方法
在有限元分析中,可采用三种方法: 位移法―取节点位移作为基本未知数; 力法―取节点力作为基本未知数;
混合法―取一部分节点位移和一部分节点力作为基本未知数。
位移法,因其未知量的确定比较程序化,易于编写计算机程序,因而得到广泛应用,力法和混合法,虽然在计算方面精度高,但编写程序比较困难,因此,目前很少采用。
基于位移法的有限元法,需建立单元刚度矩阵,对于杆系结构一般采用直观刚度法,对二维、三维等连续体可采用能量法推导。
有限元求解问题的基本步骤通常为:
第一步:问题及求解域定义:根据实际问题近似确定求解域的物理性质和几何区域。
第二步:求解域离散化:将求解域近似为具有不同有限大小和形状且彼此相连的有限个单元组成的离散域,习惯上称为有限元网络划分。显然单元越小(网络越细)则离散域的近似程度越好,计算结果也越精确,但计算量及误差都将增
2
西安石油大学
大,因此求解域的离散化是有限元法的核心技术之一。
第三步:确定状态变量及控制方法:一个具体的物理问题通常可以用一组包含问题状态变量边界条件的微分方程式表示,为适合有限元求解,通常将微分方程化为等价的泛函形式。
第四步:单元推导:对单元构造一个适合的近似解,即推导有限单元的列式,其中包括选择合理的单元坐标系,建立单元试函数,以某种方法给出单元各状态变量的离散关系,从而形成单元矩阵(结构力学中称刚度阵或柔度阵)。为保证问题求解的收敛性,单元推导有许多原则要遵循。对工程应用而言,重要的是应注意每一种单元的解题性能与约束。例如,单元形状应以规则为好,畸形时不仅精度低,而且有缺秩的危险,将导致无法求解。
第五步:总装求解:将单元总装形成离散域的总矩阵方程(联合方程组),反映对近似求解域的离散域的要求,即单元函数的连续性要满足一定的连续条件。总装是在相邻单元结点进行,状态变量及其导数(可能的话)连续性建立在结点处。
第六步:联立方程组求解和结果解释:有限元法最终导致联立方程组。联立方程组的求解可用直接法、选代法和随机法。
求解结果是单元结点处状态变量的近似值。对于计算结果的质量,将通过与设计准则提供的允许值比较来评价并确定是否需要重复计算。简言之,有限元分析可分成三个阶段,前处理、处理和后处理。前处理是建立有限元模型,完成单元网格划分;后处理则是采集处理分析结果,使用户能简便提取信息,了解计算结果。
为了能从有限单元法得出正确的解答,就必须满足下列三个方面的条件: (1)位移模式必须能反映单元的刚度位移。每个单元的位移一般总是包含两部分:一部分是由本单元的形变引起的,另一部分是与本单元的形变无关的,即刚体位移,它是由于其他单元发生了形变而连带引起的。甚至,在弹性体的某些部位,例如在靠近悬臂梁的自由端处,单元的形变很小,单元的位移主要是由于其他单元发生形变而引起的刚体位移。因此,为了正确反映单元的位移形态,唯一模式必须能反映该单元的刚体位移。
(2)位移模式必须能反映单元的常量应变。每个单元的应变一般总是包含着两个部分:一部分是与该单元中各点的位置坐标有关的,是各点不相同的,即所谓变量应变。另一部分是与位置坐标无关的,是各点相同的,即所谓常量应变。而且,当单元的尺寸比较小时,单元中各点的应变趋于相等,也就是单元的形变趋于均匀,因而常量应变就成为应变的主要部分。因此,为了正确的反映单元的形变状态,位移模式必须能反映该单元的常量应变。
3