解一元一次方程—去分母
班级 小组 姓名
一、学习目标:
目标A:会运用等式性质2正确去分母解一元一次方程. 目标B:.会运用方程解决实际问题. 问题B:列方程解决实际问题
1.一学生队伍以4千米/时的速度从学校出发步行前往某地参加劳动.出发半小时后,学校有紧急通知要传给队长,立即派了一名通讯员骑自行车以14千米/时的速度原路去追,该通讯员要用多少时间才能追上学生队伍? 二.问题引领 问题A:
1.解下面的方程: (1)2x?16?x?13?1 (3)x?x?1x6?2??23 (4)
(2)5y?43+y?14=2-5y?512
3x?x?12x?2?3?13
2.运动场的跑道一圈长400m,小健练习骑自行车,平均每分骑350m;小康练习跑步,平均每分跑250m.两人从同一处同时反向出发,经过多少时间首次相遇?又经过多少时间再次相遇?
三、专题检测 1、方程2?3x?74??x?175去分母得( ) A.2-5(3x-7)=-4(x+17) B.40-15x-35=-4x-68
1
C.40-5(3x-7)=-4x+68 D.40-5(3x-7)=-4(x+17) 2.若方程
x2?m3?x?4与方程x?62??6的解相同,求m的值为多少?
3.有一些相同的房间需要粉刷墙面.一天3名一级技工去粉刷8个房间,结果其中有50平方米墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间之外,还多粉刷了另外的40平方米墙面.每名一级工比二级工一天多粉刷10平方米墙面,求每个房间需要粉刷的墙面面积
四:课堂小结 今天你有什么收获? 五.课后作业(预计用时15分钟)
1.一个通讯员骑摩托车要在规定的时间内把文件送到.他骑摩托车的速度是每小时36千米,结果
早到20分钟,若每小时骑30千米,就迟到12分钟.则规定时间 是 小时. 2.解下列方程:
(1)x?12?2?x3x?22x?12x?14 (2) 2-1=4-5
3.王力骑自行车从A地到B地,陈平骑自行车从B地到A地,两人都沿同一公路匀速前进,已知两人在上午8时同时出发,到上午10时,两人还相距36km,到中午12时,两人又相距36km。求A,B两地间的距离?
章一第文原⑿门众⑾又玄⑩谓异出同者两⑨徼所⑧眇其观以⑦欲故⑥母⑤有;始之物万④无③名。②恒非,①也可道文译语言就那辞文果如通普非并明说也径化变切悉洞形达到门总又般一不它远深、玄为都异称同相源者两这与倪端会体妙奥道悟领察观去中从常要此因名命原本生产物万宙宇是则,有而;况状的际之开未沌浑地天述表来用以可无。释注出得言犹思意述表说解动二。等律规真则、理为申引质实和原本宙宇的指,词名是道个一第①。通普,的般一:恒②思意明说动二。态形的道指,词是名个一第③。形指:名无④。形指:名有⑤。源根,体:母⑥。常经:恒⑦。思意的微,妙通:)m(眇⑧思意的倪端申引。界、际边:)(徼⑨指为此。称:谓⑩。义含的远妙,色黑深:玄⑾。道原唯物万宙宇喻比来用此,径总的化变妙奥切一之:门⑿读阅伸延》注经德道《弼王。名常非,可道。不故也常其非形造事指名,之道可。母物万有;始之地天,名无又玄所知不而成以道言也母毒亭育长其及。物万为则时之名形未故,无於始皆有凡;妙其观以,欲无常故其观以可虚空欲常故生无成后而於始物万。也极之微,者妙。徼其观以,欲有常物其观可常故济后而道适本所欲;用无以必利为之有凡。也终归,徼门妙众又玄之谓。名异而出同,者两此门从皆妙众又矣远失是已一乎定以取曰言故而得、有无然默冥终之谓则首在可不施所名异玄於出同。也母与始,者两读阅伸延》解子老《辙苏。常非,可道能變皆彼在如為以然之此智禮義仁夫今耳後惟,常不者可而。也道非莫。常非,可名矣常同直曲方圓則立既。也者其皆凡?乎之名得況而,可不道徼妙其觀以欲常。母物萬有;始之地天,名無遍精繳留神粗則知行夫若徼至妙觀將常衆於入用下以人聖也甩體之道者故載勝可不育物萬播有。矣立始位地天為而形,名無其自。玄之謂名異而出同,者兩此出從加可盡焉在心猶然門妙衆寄常子老故又色者極至所遠凡玄也之本異雖名其哉一不嘗未復為運知安。矣兩信則,無有言而形以
2