数列专题复习
一、等差数列的有关概念:
1、等差数列的判断方法:定义法an?1?an?d(d为常数)或an?1?an?an?an?1(n?2)。 如设{an}是等差数列,求证:以bn=等差数列。
2、等差数列的通项:an?a1?(n?1)d或an?am?(n?m)d。
如(1)等差数列{an}中,a10?30,a20?50,则通项an? (答:2n?10); (2)首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是______(答:
a1?a2???an n?N*为通项公式的数列{bn}为
n8?d?3) 3n(a1?an)n(n?1)d。 ,Sn?na1?223115*如(1)数列 {an}中,an?an?1?(n?2,n?N),an?,前n项和Sn??,
2223、等差数列的前n和:Sn?则a1= _,n=_(答:a1??3,n?10);
(2)已知数列 {an}的前n项和Sn?12n?n2,求数列{|an|}的前n项和Tn(答:
2*??12n?n(n?6,n?N)Tn??2). *??n?12n?72(n?6,n?N)4、等差中项:若a,A,b成等差数列,则A叫做a与b的等差中项,且A?a?b。 2提醒:(1)等差数列的通项公式及前n和公式中,涉及到5个元素:a1、d、n、an及
Sn,其中a1、d称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,
即知3求2。(2)为减少运算量,要注意设元的技巧,如奇数个数成等差,可设为…,
a?2d,a?d,a,a?d,a?2d…(公差为d);偶数个数成等差,可设为…,a?3d,a?d,a?d,a?3d,…(公差为2d)
5、等差数列的性质:
(1)当公差d?0时,等差数列的通项公式an?a1?(n?1)d?dn?a1?d是关于n的一次函数,且斜率为公差d;前n和Sn?na1?函数且常数项为0.
n(n?1)ddd?n2?(a1?)n是关于n的二次222(2)若公差d?0,则为递增等差数列,若公差d?0,则为递减等差数列,若公差d?0,则为常数列。
(3)当m?n?p?q时,则有am?an?ap?aq,特别地,当m?n?2p时,则有
am?an?2ap.
如(1)等差数列{an}中,Sn?18,an?an?1?an?2?3,S3?1,则n=____(答:27); (4) 若{an}、{bn}是等差数列,则{kan}、{kan?pbn} (k、p是非零常数)、
a…也成等差数列,而{an}成等比数列;若{an}Sn,S2n?Sn,S3n?S2n ,{ap?nq}(p,q?N*)、
是等比数列,且an?0,则{lgan}是等差数列.
如等差数列的前n项和为25,前2n项和为100,则它的前3n和为 。(答:
225)
(5)在等差数列{an}中,当项数为偶数2n时,S偶-S奇?nd;项数为奇数2n?1时,;S奇:S偶?n:?n-1?。 S奇?S偶?a中,S2n?1?(2n?1)?a中(这里a中即an)
如(1)在等差数列中,S11=22,则a6=______(答:2);
(2)项数为奇数的等差数列{an}中,奇数项和为80,偶数项和为75,求此数列的中间项与项数(答:5;31).
(6)若等差数列{an}、{bn}的前n和分别为An、Bn,且
An?f(n),则Bnan(2n?1)anA2n?1???f(2n?1).如设{an}与{bn}是两个等差数列,它们的前n项和分bn(2n?1)bnB2n?1别为Sn和Tn,若
a6n?2Sn3n?1,那么n?___________(答:) ?8n?7bnTn4n?3(7)“首正”的递减等差数列中,前n项和的最大值是所有非负项之和;“首负”的递增
等差数列中,前n项和的最小值是所有非正项之和。法一:由不等式组
?an?0??an?0?确定出前多少项为非负(或非正);法二:因等差数列前n项是关于?或??????an?1?0??an?1?0?n的二次函数,故可转化为求二次函数的最值,但要注意数列的特殊性n?N*。上述两种
方法是运用了哪种数学思想?(函数思想),由此你能求一般数列中的最大或最小项吗?
如(1)等差数列{an}中,a1?25,S9?S17,问此数列前多少项和最大?并求此最大
值。(答:前13项和最大,最大值为169);
(2)若{an}是等差数列,首项a1?0,a2003?a2004?0,a2003?a2004?0,则使前n项和
Sn?0成立的最大正整数n是 (答:4006)
(3)在等差数列?an?中,a10?0,a11?0,且a1则( ) 1?|a10|,Sn是其前n项和,A、S1,S2B、S1,S2C、S1,S2D、S1,S2S10都小于0,S11,S12S19都小于0,S20,S21S5都小于0,S6,S7S20都小于0,S21,S22都大于0 都大于0 都大于0
都大于0 (答:B)
(8)如果两等差数列有公共项,那么由它们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数. 注意:公共项仅是公共的项,其项数不一定相同,即研究an?bm.
二、等比数列的有关概念:
1、等比数列的判断方法:定义法
an?1?q(q为常数),其中q?0,an?0或anan?1a?n(n?2)。 anan?1如(1)一个等比数列{an}共有2n?1项,奇数项之积为100,偶数项之积为120,则an?1为____(答:);(2)数列{an}中,Sn=4an?1+1 (n?2)且a1=1,若bn?an?1?2an ,求证:数列{bn}是等比数列。
2、等比数列的通项:an?a1qn?1或an?amqn?m。
如等比数列{an}中,a1?an?66,a2an?1?128,前n项和Sn=126,求n和q.(答:
56n?6,q?1或2) 2a1(1?qn)a1?anq?3、等比数列的前n和:当q?1时,Sn?na1;当q?1时,Sn?。
1?q1?q如(1)等比数列中,q=2,S99=77,求a3?a6???a99(答:44); (2)
?(?Cn?1k?010nkn; )的值为__________(答:2046)
3 / 13