difficulties and didn’t lose heart and made an attempt 5_________(find) another job. It was his friend Mr Smith6________helped him out.7_______(eventual)he got a 8_________(good)job than ever before.Without Mr Smith,he would be in trouble noHe has made up his mind 9_______(do)whatever he can 10________ return for his help in the future. 高二普通班开学考试数学试题(理)
第I卷(选择题60分)
一、选择题(本大题共12个小题,每小题5分,共60分。) 1.设命题p:?x?0,x?lnx?0,则?p为( ) A.?x?0,x?lnx?0 B.?x?0,x?lnx?0 C.?x0?0,x0?lnx0?0 D.?x0?0,x0?ln0?0 2.下列说法正确的是( )
2A.若命题P:?x?R,x?x?1?0,则?P:?x?R,x2?x?1?0;
B.命题已知x,y?R,若x?y?3,则x?2或y?1是真命题; C.设x?R,则2?x?0是?1?x?3的充分不必要条件;
D.?x、y?R,如果xy?0,则x?0的否命题是?x、y?R,如果xy?0,则x?0
y2x2254.双曲线2?2?1(a?0,b?0)的一个焦点到其渐近线的距离为a,则双曲线的离
ab5
心率为( ) A.5253545 B. C. D. 55555.如图,面ACD??,B为AC的中点, AC?2,?CBD?60,P为?内的动点,且P到直线BD的距离为3则?APC的最大值为( )
A. 30° B. 60° C. 90° D. 120°
6.如图,在长方体ABCD?A?B?C?D?中,点P,Q分别是棱BC,CD上的动点,
BC?4,CD?3,CC??23,直线CC?与平面PQC'所成的角为300,则?PQC?的面积的
最小值是( )
difficulties and didn’t lose heart and made an attempt 5_________(find) another job. It was his friend Mr Smith6________helped him out.7_______(eventual)he got a 8_________(good)job than ever before.Without Mr Smith,he would be in trouble noHe has made up his mind 9_______(do)whatever he can 10________ return for his help in the future.
A. 185163 B. 8 C. D. 10 537.如图,60°的二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB.已知AB?4,AC?6,BD?8,则CD的长为( )
A. 17 B. 7 C. 217 D. 9
8.已知A,B,C,D是同一球面上的四个点,其中?ABC是正三角形, AD?平面ABC,
AD?2AB?6,则该球的表面积为( )
A. 48? B. 323? C. 24? D. 16?
x2y29.已知椭圆的方程为??1,过椭圆中心的直线交椭圆于A,B两点,F2是椭圆的右
94焦点,则△ABF2的周长的最小值为() A.7B.8C.9
D.10
A1B1C1D110.正方体的棱长为11,O到平面 ABCD?AB1OC是底面的中心,则1D1的距离为ABC1D1( )
difficulties and didn’t lose heart and made an attempt 5_________(find) another job. It was his friend Mr Smith6________helped him out.7_______(eventual)he got a 8_________(good)job than ever before.Without Mr Smith,he would be in trouble noHe has made up his mind 9_______(do)whatever he can 10________ return for his help in the future.A.
2123B.C.D. 4222
211.已知直线l的斜率为k,它与抛物线y?4x相交于A,B两点,F为抛物线的焦点, 若 ,AF?3FB则|k|=( )
A.22B.
23C.D.3
43x2y212.过双曲线2?2?1(a?0,b?0)的左焦点F作直线l与双曲线交于A,B两点,使
abAB?4b,若这样的直线有且仅有两条,则该双曲线的离心率e的取值范围是( ) 得 A.(1,55)B.(1,)?(5,??) 225,5)D. 2(5,??)C. (二、填空题:本大题共4小题,每小题5分,共20分.
13.某人骑电动车以24km/h的速度沿正北方向的公路行驶,在点A处望见电视塔S在电动车的北偏东30?方向上,15min后到点B处望见电视塔S在电动车的北偏东75?方向上,则电动车在点B时与电视塔S的距离是__________.
14.若不等式ax?bx?c?0的解集为?x|2?x?3?,则不等式cx?bx?a?0的解集为
22__________.
215.抛物线y?2px?p?0?的一条弦AB过焦点F,且AF?2,BF?3,则抛物线的方
程为___________.
16.以下四个关于圆锥曲线命题:
22①“曲线ax?by?1为椭圆”的充分不必要条件是“a?0,b?0”;
y2x2??1有相同的焦点,则该双曲线的渐近线方②若双曲线的离心率e?2,且与椭圆
248程为y??3x;
③抛物线x??2y的准线方程为x?21; 8④长为6的线段AB的端点A,B分别在x、y轴上移动,动点M?x,y?满足AM?2MB,