MATLAB¸´Ï°Ìâ

3.ÔÚwhile±í´ïʽ,Óï¾äÌå,EndÑ­»·Óï¾äÖУ¬±í´ïʽµÄֵΪÁãʱ±íʾѭ»·Ìõ¼þÎªÕæ£¬Óï¾äÌ彫±»Ö´ÐУ¬·ñÔòÌø³ö¸ÃÑ­»·Óï¾ä¡££¨X£©

4.ʹÓú¯Êýzeros£¨5£©Éú³ÉµÄÊÇÒ»¸ö¾ßÓÐ5¸öÔªËØµÄÏòÁ¿¡££¨¡Á£©

5.A¡¢BÁ½¸öÐÐÁзֱðÏàͬµÄÊý×飬µ±Ö´ÐÐA£¾BµÄ¹ØÏµÔËËãºó£¬Æä½á¹ûÊÇ0»òÕß1.£¨¡Á£©

6.abs()ÊÇÒ»¸öÕë¶ÔÊýÖµÁ¿Çó¾ø¶ÔµÄº¯Êý¡££¨¡Á£©

7.ÈôX=[1,2,3],Y=[4,5,6],ÔòZ=X*Y=[4£¬10£¬18]³ÉÁ¢ (X)

8.ÈôS=[1,2;3,4]£¬D=[1,4,7£»8,5,2,£»7,2,0],ÔòD^SÊÇ·Ç·¨ÔËËã (¡Ì£©

9.ÊäÈë¹ØÏµÊ½a=2+2==4µÃa=1 £¨¡Ì)

10.³ÌÐòÖбØÐëÓÃÈ«½ÇÓ¢ÎÄ×ÖĸºÍ·ûºÅ¡£ (X)

11.ÎļþÃû¿ÉÒÔÓúº×Ö¡£ (X)

12.pause£¨n£©ÊÇÖ¸³ÌÐòÖ´Ðе½´Ë´¦Ê±ÔÝÍ£¡£ (X)

13.º¯ÊýÎļþÓÉfunctionÆðÍ·£¬ºó¸úµÄº¯ÊýÃû±ØÐëÓëÎļþÃûͬ¡££¨¡Ì£©

14.±êʶ·ûÖеÚÒ»¸ö×Ö·û±ØÐëÊÇÓ¢ÎÄ×Öĸ¡££¨¡Ì£©

15.ÔÚmatlabÖУ¬±äÁ¿ºÍ³£Á¿µÄ±êʶ·û×ÔÊÐí18¸ö×Ö·û£»º¯ÊýºÍÎļþÃûÔòͨ³£²»³¬¹ý9¸ö×Ö·û¡£ £¨X£©

16,º¯ÊýÎļþ¿ÉÒÔÔÚÃüÁî´°¿ÚÖ±½ÓÔËÐÐ (X£©

1.ÔÚMatlabÖв»¿ÉÒÔ½«Í¼ÐμôÇе½wordÎĵµÖС£ £¨ £© ½â£ºX¡£¿ÉÒÔ½«Í¼¼ôÇе½wordÎĵµÖУ¬Í¨¹ýͼÐα༭´°µÄ ±à¼­¡ú¸´ÖÆÑ¡Ï¸´ÖÆÍ¼ÐΣ¬È»ºóÕ³Ìùµ½ÏàÓ¦µÄwordÎĵµÖС£ 2.ÔÚÊäÈë¾ØÕóÔªËØÊ±,ͬһÐеĸ÷ÔªËØÖ®¼äÖ»ÄÜÓöººÅ·Ö¸î¡££¨ £© ½â£ºX¡£¿ÉÒÔÓÿոñ·Ö¸ô¡£

3.ÃüÁîÊäÈëÍê³É£¬ÔÚ°´Enter¼üʱ£¬¹â±ê±ØÐëÒªÒÆµ½¸ÃÃüÁîÐеÄĩβ¡££¨ £© ½â£ºX¡£¹â±ê¿ÉÒÔÍ£ÔÚ¸ÃÃüÁîµÄÈκÎλÖá£

4.¶ÔÓڽϳ¤µÄ×Ö·û´®¿ÉÒÔÓÃ×Ö·û´®ÏòÁ¿±íʾ£¬¼´Ó㨣©À¨ÆðÀ´£¨ £©

½â£ºX¡£Ó¦¸ÃÊÇ·½À¨ºÅ¡£

5.Èç¹ûÒ»¸öÃüÁîÐкܳ¤£¬ÐèÒª·Ö³ÉÁ½ÐлòÕß¶àÐÐÀ´ÊäÈ룬¿ÉÒÔÔÚµÚ1¸öÎïÀíÐÐÖ®ºó°´ÏÂEnter¼ü£¬È»ºó½Ó×ÅÔÚÏÂÒ»¸öÎïÀíÐмÌÐøÊäÈëÃüÁîµÄÆäËû²¿·Ö¡£ £¨ £© ½â£ºX¡£»¹ÒªÔÚµÚ1¸öÎïÀíÐÐÖ®ºó¼ÓÉÏ3¸öСºÚµãÔÙ°´ÏÂEnter¼ü¡£ 6.if,for,whileÓë±í´ïʽ֮¼äÓ¦Áô¿Õ¸ñ£¬ÔÚ±í´ïʽÓëÓï¾ä×éÖ®¼ä±ØÐëÓÿոñ»ò¶ººÅ·Ö¸ô£¬¶øÔÚÓï¾ä×éµÄºóÃæÓÿոñÀ´Óëend»òelse·Ö¸ô¡£ £¨ £© ½â£ºX¡£ÔÚÓï¾ä×éµÄºóÃæ±ØÐëÓöººÅ»ò·ÖºÅ¸ô¿ªend»òelse¡£ 7.pause£¨n£©ÖÐ?n?±íʾϱ꣬ûÓÐʵ¼ÊÒâÒå¡£ £¨ £© ½â£ºX¡£¸ÃʽÖÐpauseÔÝÍ£³ÌÐòÖ´ÐУ¬?n?±íʾÔÝÍ£¼¸ÃëÖÓ¡£

8.MATLABµÄ³ÌÐòÎļþºÍSimulinkÄ£ÐÍÎļþµÄÀ©Õ¹Ãû·Ö±ðÊÇ.mºÍ.mdl () ½â£º¡Ì¡£

9.?%?¿ÉÒÔʹÃüÁîÐв»ÏÔʾÔËËã½á¹û¡£

½â£ºX¡£ÒòΪ?%?±íʾ¸ÃÐÐΪעÊÍÐУ¬?£»?±íʾ¿ÉÒÔʹÃüÁîÐв»ÏÔʾÔËËã½á¹û¡£

10.helpÃüÁîÏÔʾij¸öº¯ÊýµÄËùÓÐ×¢ÊÍÐУ¬Ö±µ½Óöµ½¿Õ°××¢ÊÍÐлòÖ´ÐÐÓï¾äΪֹ¡£ ½â£º¡Ì¡£

11.Çå¿Õ Matlab ¹¤×÷¿Õ¼äÄÚËùÓбäÁ¿µÄÖ¸ÁîÊÇ clc ¡£

½â£º X¡£MATLABÖеÄclcÓÃÓÚÇå³ýÖ¸Áî´°ÄÚÈÝ£¬clfÓÃÓÚÇå³ýͼÐδ°£¬clearÓÃÓÚÇå³ý¹¤×÷¿Õ¼äÀïµÄÄÚÈÝ¡£

12.ÔÚ³ÌÐòµ÷ÊÔʱ£¬ÎÒÃÇͨ³£°ÑijЩ·ÖºÅ¸ÄΪ¶ººÅ£¬Ê¹Öмä½á¹ûÄÜÏÔʾÔÚÆÁÄ»ÉÏ£¬×÷Ϊ²é´íµÄÒÀ¾Ý¡£ ( ) ½â£º¡Ì¡£

13.MÎļþ¿É·ÖΪÁ½ÖÖÆäÖÐÒ»ÖÖÊÇÖ÷³ÌÐò£¬Ò²³ÆÎªº¯ÊýÎļþ¡£

½â£ºX¡£MÎļþ¿É·ÖΪÁ½ÖÖÆäÖÐÒ»ÖÖÊÇÖ÷³ÌÐò£¬Ò²³ÆÖ÷³ÌÐòÎļþ£¬ÁíÒ»ÖÖÊÇ×Ó³ÌÐò£¬Ò²³ÆÎªº¯ÊýÎļþ¡£

14.matlabµÄ¹¤×÷»·¾³ÓÉÃüÁî´°¡¢Í¼Ðδ°ºÍÎı¾±à¼­¿ò×é³É¡£ ( ) ½â£º¡Ì¡£

15.matlab¶Ô´óСд²»¼ÓÒÔÇø±ð

½â£ºX£¬MATLAB¶Ô´óСдÃô¸Ð£¬¼´°ÑAºÍa¿´×÷Á½¸ö²»Í¬µÄ×Ö·û¡£

15.ÔÚMatlabÖÐInf±íʾÎÞÇî´ó£¬NaN±íʾÎÞÇîС¡££¨ £© ½â£º¡Ì¡£

ËÄ£® ±à³ÌÌâ

1.´òÓ¡³öËùÓÐË®ÏÉ»¨Êý¡£Ëùν?Ë®ÏÉ»¨Êý?£¬ÊÇÖ¸Ò»¸öÈýλÊý£¬Æä¸÷λÊý×ÖÁ¢·½Ö®ºÍµÈÓÚ¸ÃÊý±¾Éí¡££¨Ìáʾ£ºÓÃfixº¯ÊýºÍremº¯Êý¡£fixΪȡÕûº¯Êý) for k=100:999 a=fix(k/100);

b=rem(fix(k/10),10); c=rem(k,10);

if a.^3+b.^3+c.^3==k; fprintf('%u,\\t\\t',k)

end

2. ÔÚ0¡Üx¡Ü2pÇø¼äÄÚ£¬»æÖÆÇúÏßy=2e-0.5xcos(4¦Ðx)

³ÌÐòÈçÏ£ºx=0:pi/100:2*pi;

y=2*exp(-0.5*x).*cos(4*pi*x); plot(x£¬y)

3. ÔÚÍ¬Ò»×ø±êÄÚ£¬·Ö±ðÓò»Í¬ÏßÐͺÍÑÕÉ«»æÖÆÇúÏßy1=0.2e-0.5xcos(4¦Ðx) ºÍy2=2e-0.5xcos(¦Ðx)£¬±ê¼ÇÁ½ÇúÏß½»²æµã¡£ ³ÌÐòÈçÏ£º

x=linspace(0,2*pi,1000); y=2*sin(x);

subplot(2,2,1);bar(x,y,'g');

title('bar(x,y,''g'')');axis([0,7,2,2])£» subplot(2,2,2);stairs(x,y,'b');

title('stairs(x,y,''b'')';axis([0,7,2,2]); subplot(2,2,3)stem(x,y,'k');

title('stem(x,y,''k'')');axis([0,7,2,2])£» subplot(2,2,4);fill(x,y,'y');

title('fill(xy,''y'')');axis([0,7,-2,2]); 4£¬ ¼ÆËã

Óë

µÄÊý×é³Ë»ý¡£

a=[6 9 3;2 7 5]; b=[2 4 1;4 6 8]; a.*b ans =

12 36 3 8 42 40

5£® ¶ÔÓÚ£¬Èç¹û£¬£¬Çó½âX¡£

A=[4 9 2;7 6 4;3 5 7]; B=[37 26 28]¡¯; X=A\\B X =

-0.5118 4.0427 1.3318

6£®Éè £¬°Ñx=0~2¦Ð¼ä·ÖΪ101µã£¬»­³öÒÔxΪºá×ø±ê£¬yΪ×Ý×ø±êµÄÇúÏߵĴúÂë¡£ x=linspace(0,2*pi,101);

y=cos(x)*(0.5+(1+x.^2)\\3*sin(x)); plot(x,y,'r')

7.ÔÚͬһͼÉÏ·Ö±ðÓúìɫʵÏߺÍÂÌÉ«ÐéÏß»æÖÆy1=sin(x)ºÍy2=cos(x)ÔÚÇø¼ä[0£¬4*pi]µÄÇúÏߣ¬²¢ÓÃÐǺÅ*±ê³öÁ½ÌõÇúÏߵĽ»µãÒÔ¼°½¨Á¢Í¼Àý

t=(0:pi/100:pi)'; y1=sin(t)*[1,-1]; y2=sin(t).*sin(9*t); t3=pi*(0:9)/9;

y3=sin(t3).*sin(9*t3);subplot(1,2,1) plot(t,y1,'r:',t,y2,'b',t3,y3,'bo') subplot(1,2,2) plot(t,y2,'b') axis([0,pi,-1,1])

8.ÔÚͬһͼÉÏ·Ö±ðÓúìɫʵÏߺÍÂÌÉ«ÐéÏß»æÖÆy1=sin(x)ºÍy2=cos(x)ÔÚÇø¼ä[0£¬4*pi]µÄÇúÏߣ¬²¢ÓÃÐǺÅ*±ê³öÁ½ÌõÇúÏߵĽ»µãÒÔ¼°½¨Á¢Í¼Àý¡£

clf

x=0:pi/200:2*pi; y1=sin(x); y2=cos(x);

zz=x(find(abs(y1-y2)<0.005)) z=min(zz)

plot(x,y1,'r-',x,y2,'g-.') hold on

plot(zz,sin(zz),'*') legend('sin','cos')

9¡¢Ä³É̳¡¶Ô¹Ë¿ÍËù¹ºÂòµÄÉÌÆ·ÊµÐдòÕÛÏúÊÛ£¬±ê×¼ÈçÏÂ(ÉÌÆ·¼Û¸ñÓÃpriceÀ´±íʾ)£º

price<200 ûÓÐÕÛ¿Û 200¡Üprice<500 3%ÕÛ¿Û 500¡Üprice<1000 5%ÕÛ¿Û 1000¡Üprice<2500 8%ÕÛ¿Û 2500¡Üprice<5000 10%ÕÛ¿Û 5000¡Üprice 14%ÕÛ¿Û

price=input('ÇëÊäÈëÉÌÆ·¼Û¸ñ');

switch fix(price/100) case {0,1} %¼Û¸ñСÓÚ200

rate=0;

case {2,3,4} %¼Û¸ñ´óÓÚµÈÓÚ200µ«Ð¡ÓÚ500

rate=3/100;

case num2cell(5:9) %¼Û¸ñ´óÓÚµÈÓÚ500µ«Ð¡ÓÚ1000

rate=5/100;

case num2cell(10:24) %¼Û¸ñ´óÓÚµÈÓÚ1000µ«Ð¡ÓÚ2500

rate=8/100;

case num2cell(25:49) %¼Û¸ñ´óÓÚµÈÓÚ2500µ«Ð¡ÓÚ5000

rate=10/100;

otherwise %¼Û¸ñ´óÓÚµÈÓÚ5000

10¡¢ÁгöÇóËØÊýµÄ³ÌÐò¡£ clear,close all N=input('N='), x=2:N;

for u=2:sqrt(N)

n=find(rem(x,u)==0 & x~=u); x(n)=[]; end,x

11¡¢ÊäÈëÊýn£¬ÅÐ¶ÏÆä¼¶ÆæÅ¼ÐÔ¡£ clear,close all n=input('n='), if isempty(n)==1 A='empty',

elseif rem(n,2)==0 A='even', else A='odd', end

12¡¢Áгö¹¹³ÉHilbert¾ØÕóµÄ³ÌÐò format rat, n=input('n='), for i=1:n for j=1:n

ÁªÏµ¿Í·þ£º779662525#qq.com(#Ìæ»»Îª@) ËÕICP±¸20003344ºÅ-4