∴PB=BC﹣PC=﹣2 =.
【点评】本题考查切线的性质、解直角三角形、勾股定理、等腰三角形的判定和性质、垂径定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
23.(8分)(2017?宿迁)小强与小刚都住在安康小区,在同一所学校读书,某天早上,小强7:30从安康小区站乘坐校车去学校,途中需停靠两个站点才能到达学校站点,且每个站点停留2分钟,校车行驶途中始终保持匀速,当天早上,小刚7:39从安康小区站乘坐出租车沿相同路线出发,出租车匀速行驶,比小强乘坐的校车早1分钟到学校站点,他们乘坐的车辆从安康小区站出发所行使路程y(千米)与行驶时间x(分钟)之间的函数图象如图所示. (1)求点A的纵坐标m的值;
(2)小刚乘坐出租车出发后经过多少分钟追到小强所乘坐的校车?并求此时他们距学校站点的路程.
【考点】FH:一次函数的应用.
【分析】(1)根据速度=路程÷时间,可求出校车的速度,再根据m=3+校车速度×(8﹣6),即可求出m的值;
(2)根据时间=路程÷速度+4,可求出校车到达学校站点所需时间,进而可求出
第21页(共29页)
出租车到达学校站点所需时间,由速度=路程÷时间,可求出出租车的速度,再根据相遇时间=校车先出发时间×速度÷两车速度差,可求出小刚乘坐出租车出发后经过多少分钟追到小强所乘坐的校车,结合出租车的速度及安康小区到学校站点的路程,可得出相遇时他们距学校站点的路程. 【解答】解:(1)校车的速度为3÷4=0.75(千米/分钟), 点A的纵坐标m的值为3+0.75×(8﹣6)=4.5. 答:点A的纵坐标m的值为4.5.
(2)校车到达学校站点所需时间为9÷0.75+4=16(分钟), 出租车到达学校站点所需时间为16﹣9﹣1=6(分钟), 出租车的速度为9÷6=1.5(千米/分钟),
两车相遇时出租车出发时间为0.75×(9﹣4)÷(1.5﹣0.75)=5(分钟), 相遇地点离学校站点的路程为9﹣1.5×5=1.5(千米).
答:小刚乘坐出租车出发后经过5分钟追到小强所乘坐的校车,此时他们距学校站点的路程为1.5千米.
【点评】本题考查了一次函数的应用,解题的关键是:(1)根据数量关系列式计算;(2)根据相遇时间=校车先出发时间×速度÷两车速度差,求出小刚乘坐出租车追到小强所乘坐的校车的时间.
24.(8分)(2017?宿迁)如图,在△ABC中,AB=AC,点E在边BC上移动(点E不与点B,C重合),满足∠DEF=∠B,且点D、F分别在边AB、AC上. (1)求证:△BDE∽△CEF;
(2)当点E移动到BC的中点时,求证:FE平分∠DFC.
【考点】S9:相似三角形的判定与性质;KH:等腰三角形的性质.
【分析】(1)根据等腰三角形的性质得到∠B=∠C,根据三角形的内角和和平角的定义得到∠BDE=∠CEF,于是得到结论;
第22页(共29页)
(2)根据相似三角形的性质得到三角形的性质即可得到结论. 【解答】解:(1)∵AB=AC, ∴∠B=∠C,
∵∠BDE=180°﹣∠B﹣∠DEB, ∠CEF=180°﹣∠DEF﹣∠DEB, ∵∠DEF=∠B, ∴∠BDE=∠CEF, ∴△BDE∽△CEF;
,等量代换得到
,根据相似(2)∵△BDE∽△CEF,
∴ ,
∵点E是BC的中点, ∴BE=CE,
∴ ,
∵∠DEF=∠B=∠C, ∴△DEF∽△ECF, ∴∠DFE=∠CFE, ∴FE平分∠DFC.
【点评】本题考查了相似三角形的判定和性质,等腰三角形的性质,熟练掌握相似三角形的判定和性质是解题的关键.
25.(10分)(2017?宿迁)如图,在平面直角坐标系xOy中,抛物线y=x2﹣2x﹣3交x轴于A,B两点(点A在点B的左侧),将该抛物线位于x轴上方曲线记作
第23页(共29页)
M,将该抛物线位于x轴下方部分沿x轴翻折,翻折后所得曲线记作N,曲线N交y轴于点C,连接AC、BC.
(1)求曲线N所在抛物线相应的函数表达式; (2)求△ABC外接圆的半径;
(3)点P为曲线M或曲线N上的一动点,点Q为x轴上的一个动点,若以点B,C,P,Q为顶点的四边形是平行四边形,求点Q的坐标.
【考点】HF:二次函数综合题.
【分析】(1)由已知抛物线可求得A、B坐标及顶点坐标,利用对称性可求得C的坐标,利用待定系数法可求得曲线N的解析式;
(2)由外接圆的定义可知圆心即为线段BC与AB的垂直平分线的交点,即直线y=x与抛物线对称轴的交点,可求得外接圆的圆心,再利用勾股定理可求得半径的长;
(3)设Q(x,0),当BC为平行四边形的边时,则有BQ∥PC且BQ=PC,从而可用x表示出P点的坐标,代入抛物线解析式可得到x的方程,可求得Q点坐标,当BC为平行四边形的对角线时,由B、C的坐标可求得平行四边形的对称中心的坐标,从而可表示出P点坐标,代入抛物线解析式可得到关于x的方程,可求得P点坐标. 【解答】解:
(1)在y=x2﹣2x﹣3中,令y=0可得x2﹣2x﹣3=0,解得x=﹣1或x=3, ∴A(﹣1,0),B(3,0), 令x=0可得y=﹣3,
又抛物线位于x轴下方部分沿x轴翻折后得到曲线N,
第24页(共29页)