(新课标)2020高考数学二轮总复习1.2.2数列递推关系综合应用专题限时训练文

1.2.2 数列递推关系综合应用

专题限时训练 (小题提速练)

(建议用时:45分钟)

一、选择题

a2n-2*

1.设数列{an}满足a1=a,an+1=(n∈N),若数列{an}是常数列,则a=( )

an+1

A.-2 C.0

B.-1 D.(-1)

na2a2-21-22

解析:因为数列{an}是常数列,所以a=a2==,即a(a+1)=a-2,解得a=-

a1+1a+1

2.故选A. 答案:A

1211*

2.在数列{an}中,若a1=1,a2=,=+(n∈N),则该数列的通项为( )

2an+1anan+21

A.an=

nB.an=

2 n+1

C.an=

2 n+2

2

3D.an= n解析:由已知可得

1

an+1anan+2

11=+,

an+1anan+2an+1

?an?

111

-=-,

?1?11111

所以??是首项为=1,公差为-=2-1=1的等差数列,所以=n,即an=.

a1a2a1ann答案:A

3.已知等差数列{an}满足a2=3,Sn-Sn-3=51(n>3),若Sn=100,则n的值为( ) A.8 C.10

B.9 D.11

解析:由Sn-Sn-3=51得,an-2+an-1+an=51,所以an-1=17,又a2=3,∴Sn=100,解得n=10. 答案:C

n?a2+an-1?

2

1*

4.已知数列{an}满足log3an+1=log3an+1(n∈N),且a2+a4+a6=9,则log(a5+a7+a9)=

3( ) A.-5

1B.-

5

C.5

解析:∵log3an+1=log3an+1,∴an+1=3an. ∴数列{an}是以3为公比的等比数列. ∵a2+a4+a6=a2(1+q+q)=9,

2

4

1D. 5

∴a5+a7+a9=a5(1+q+q)=a2q(1+q+q)=3. 15

∴log3=-5.故选A.

3答案:A

5.已知Sn表示数列{an}的前n项和,若对任意n∈N满足an+1=an+a2,且a3=2,则S2019=( )

A.1 008×2 020 C.1 009×2 019

B.1 008×2 019 D.1 009×2 020

*

243245

解析:在an+1=an+a2中,令n=1,得a2=a1+a2,a1=0;令n=2,得a3=2=2a2,a2=1, 2 019×2 018于是an+1-an=1,故数列{an}是首项为0,公差为1的等差数列.S2019==1

2009×2 019. 答案:C

6.在数列{an}中,a1=1,a2=2,当整数n>1时,Sn+1+Sn-1=2(Sn+S1)都成立,则S15=( ) A.210 C.224

解析:n>1时,Sn+1-Sn=Sn-Sn-1+2, ∴an+1=an+2,∴an+1-an=2.

数列{an}从第二项开始组成公差为2的等差数列,所以S15=a1+(a2+…+a15)=1+×14=211. 答案:B

11

7.(2019·广东汕头市一模)设Sn是数列{an}的前n项和,且Sn=-an,则an=( )

221?1?n-1A.·?? 3?2?

1?2?n-1B.·?? 2?3?

2+282

B.211 D.225

?1?n1C.2·??- ?3?3?1?nD.?? ?3?

1111111

解析:由题意,得S1=a1=-a1,所以a1=.又当n≥2时,Sn-Sn-1=an=-an-+an2232222

-1,即

an111?1?n=,所以数列{an}是首项为,公比为的等比数列,所以an=??.故选D. an-1333?3?

答案:D

8.已知数列{an}满足a1=1,an+1=A.an=2-1 1C.an=n 2-1解析:由题意得

1

n(n∈N),则数列{an}的通项公式为( ) an+2

1

B.an=2-n-1 31

D.an=n

3-2

an*

an+1an21?1?=+1,则+1=2?+1?,

an+1

?an?

1

易知+1=2≠0,

a1

?1?

所以数列?+1?是以2为首项,2为公比的等比数列,

?an?

11n则+1=2,则an=n.故选C. an2-1答案:C

9.已知函数f(n)=ncos(nπ),且an=f(n),则a1+a2+…+a100=( ) A.0 C.5 050

解析:a1+a2+a3+…+a100 =-1+2-3+4-…-99+100 =(2-1)+(4-3)+…+(100-99) 50?3+199?=3+7+…+199==5 050.故选C.

2答案:C

10.已知数列{an}满足a1=0,an+1=an+2an+1+1,则a13=( ) A.143 C.168

解析:由an+1=an+2an+1+1,

可知an+1+1=an+1+2an+1+1=(an+1+1), ∴an+1+1=an+1+1,又a1+1=1,

故数列{an+1}是首项为1,公差为1的等差数列,所以an+1=n,所以a13+1=13,则

2

2

2

2

2

2

2

2

2

2

2

2

2

2

B.100 D.10 200

B.156 D.195

a13=168.故选C.

答案:C

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4