智能灌溉系统上位机软件的设计与实现

龙源期刊网 http://www.qikan.com.cn

智能灌溉系统上位机软件的设计与实现

作者:赵震奇

来源:《计算机时代》2012年第12期

摘 要: 根据农田环境的水、空气、土壤环境的需求,设计了基于ZigBee无线传感器网络的智能灌溉系统。具体分析了系统功能,设计了总体结构。探讨了基于.Net的智能灌溉系统上位机的功能需求、系统架构、实现方案及关键技术等。

关键词: ZigBee; 无线传感器; .Net; 智能灌溉系统; 上位机

中图分类号:TP315 文献标志码:A 文章编号:1006-8228(2012)12-61-04 Design and implementation of PC software for intelligent irrigation system Zhao Zhenqi

(Wuxi Machinery and Electron Higher Professional and Technical School, Wuxi, Jiangsu 214028, China)

Abstract: According to the requirements of water, air and soil in farmland environment, an intelligent irrigation system is designed, based on wireless sensor network ZigBee. The system function is analyzed and overall structure is designed. The function demand, system architecture, concrete implementation scheme and key technology of intelligent irrigation system principal machine based on .Net are discussed.

Key words: ZigBee; wireless sensor; .Net; intelligent irrigation system; PC 0 引言

在水资源紧缺的条件下,要实现灌溉农业的可持续发展,就需要灌溉更加精确智能。在不影响农作物生长发育的前提下,按照农作物需水要求准确及时地预报,并实现水量的自动控制,精确施予。目前,主要采用先进的物联网技术与传统农业生产相结合的办法,通过研发先进的传感器、灌溉控制设备、功能强大的计算机灌溉管理软件等来实现科学灌溉,提高农业效益[1]。

由于全球气候的恶化和水污染等原因,水资源短缺已经成为全球性的问题。在各大园林、农业及高尔夫灌溉项目中,越来越多的人认识到了节水灌溉的重要性。为了保证人工植被和农作物的正常生长,节水灌溉系统起到了至关重要的作用。 1 系统主要功能

龙源期刊网 http://www.qikan.com.cn

我们设计并制作出具有监视、控制、环境数据的不间断采集、整理、统计、绘图功能的智能灌溉系统,以实现优化科学灌溉。该系统适用于庭院、园林、农田等灌溉场所。主要包括以下功能:

⑴ 根据CO2浓度自动控制电磁阀的开关,与CO2发生器配套使用;

⑵ 根据土壤的干湿度自动控制电磁阀的开关,与喷灌、微灌、滴灌等管道系统配套使用;

⑶ 根据空气的干湿度自动控制电磁阀的开关,与加/降温、加/除湿等设备配套使用。 2 总体结构设计

Zigbee是基于IEEE802.15.4标准的低功耗局域网协议。根据这个协议规定的技术是一种短距离、低功耗的无线通信技术。其特点是近距离、低复杂度、自组织、低功耗、低数据速率、低成本。主要适合用于自动控制和远程控制领域,可以嵌入各种设备。

无线网关实现了ZigBee、GPRS、以太网、串口的网络互联和协议转换,集成了符合ZigBee协议标准的JN5121系列通讯模块,GPRS模块,以太网接口,RS232接口。并具有通讯距离远、抗干扰能力强、组网灵活等优点和特性;可实现一点对多点、多点对多点的串口设备间的数据透明传输,也可以根据用户的需要定制软件;可按照星形网络、网状网络以及树状网络组网。兼容FCC Part 15, ETSI ETS 300-328和日本的ARIB STD-T16标准。主要应用领域:煤矿/油田设备远程监控、电力/水利设备远程监控、远程智能抄表/线缆取代、工业、农业自动化控制、楼宇、路灯智能控制[2]。

本系统设计由三个部分组成:监控中心、无线网关、无线路由节点。其中,监控中心主体是服务器和上位机;无线网关集成了符合ZigBee协议标准的JN5121系列通讯模块,GPRS模块,以太网接口,RS232接口,负责将各节点的数据发送给上位机处理,或接收上位机发送的指令并传送给各节点;无线路由节点可以有多个,集成了CO2浓度传感模块、土壤的干湿度传感模块、空气的干湿度传感模块和ARM模块。系统组成框图如图1所示。 3 硬件原理

本系统的传感节点硬件采用CC2530,如图2所示。CC2530是用于2.4-GHz IEEE 802.15.4、ZigBee和RF4CE应用的一个真正的片上系统(SoC)解决方案。它能够以非常低的总材料成本建立强大的网络节点。CC2530结合了领先的RF 收发器的优良性能,业界标准的增强型8051 CPU,系统内可编程闪存,8-KB RAM和许多其他强大的功能。CC2530有四种不同的闪存版本:CC2530F32/64/128/256,分别具有32/64/128/256KB的闪存。CC2530具有不同的运行模式,使得它特别适应超低功耗要求的系统。运行模式之间的转换时间短,进一步确保了低能源消耗[3]。

龙源期刊网 http://www.qikan.com.cn

4 上位机的设计 4.1 功能需求

以太网通信方式是物联网智能灌溉系统与计算机最主要的通信方式,采用UDP通信协议层,多线程方式进行数据交互。

上位机需要单独具备以太网通信界面,除了实现物联网智能灌溉系统以太网通信命令中列出的各项命令之外,还需要以下几个重要功能。

⑴ 网络拓扑,显示物联网智能灌溉系统所有已经注册的设备节点物理区域视图,主要用于直观地反映设备节点的分布概况,用于设备故障定位。在视图上,双击设备节点图标能够自动显示该节点的实时数据信息;如果设备有故障或告警,节点图标应该改变自身颜色警示操作人员。

⑵ 数据查询,实时记录物联网智能灌溉系统的当前和历史数据,提供用户对数据按日期和设备标识查询的功能。根据数据容量和数据访问并发性的要求,建议数据库采用专用的数据库管理软件,例如SQL Server 2005。

⑶ 数据分析,根据数据库内查询的数据绘制图表(折线图或饼图等),显示数据的分布和趋势,提供用户环境参数的历史数据和做出灌溉决策的参考信息。

⑷ 分布式软件,可以在多个计算机上同时打开上位机软件,软件之间相互协调,每个上位机作出的参数修改都能在其他上位机软件上显示出操作记录,参数设置具有并发性,多个上位机软件进行同一参数的设置不会冲突,参数设置完成后,其他上位机界面会同步更新。 4.2 上位机架构

本系统采用.Net三层架构。三层架构(3-tier application) 通常意义上的三层架构就是将整个业务应用逻辑上划分为:表示层(USL)、业务逻辑层(BLL)、数据访问层(DAL)。三层架构是一个支持可抽取、可替换的“抽屉”式架构,符合“高内聚,低耦合”的思想,所以这些层可以单独开发,单独测试[4]。具体的三层架构的分层结构图,如图3所示。 4.3 开发工具的选择

.NET是一个开发平台,它定义了一种公用语言子集(Common Language Subset, CLS)。.NET统一了编程类库,提供了对下一代网络通信标准,可扩展标记语言(XML)的完全支持,使软件的开发变得容易。.NET与Windows平台紧密集成,是一种面向网络、支持各种用户终端的开发平台环境。

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4