成人高考(专升本)高等数学成考笔记

第一章极限和连续 第一节极限

[复习考试要求]

1.了解极限的概念(对极限定义等形式的描述不作要求)。会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。 2.了解极限的有关性质,掌握极限的四则运算法则。

3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。会运用等价无穷小量代换求极限。 4.熟练掌握用两个重要极限求极限的方法。 [主要知识内容] (一)数列的极限 1.数列

定义按一定顺序排列的无穷多个数

称为无穷数列,简称数列,记作{xn},数列中每一个数称为数列的项,第n项xn为数列的一般项或通项,例如 (1)1,3,5,?,(2n-1),?(等差数列) (2)(3)

(等比数列) (递增数列)

(4)1,0,1,0,?,?(震荡数列) 都是数列。它们的一般项分别为

(2n-1),。 对于每一个正整数n,都有一个xn与之对应,所以说数列{xn}可看作自变量n的函数xn=f(n),它的定义域是全体正整数,当自变量n依次取1,2,3?一切正整数时,对应的函数值就排列成数列。

在几何上,数列{xn}可看作数轴上的一个动点,它依次取数轴上的点x1,x2,x3,...xn,?。

2.数列的极限

定义对于数列{xn},如果当n→∞时,xn无限地趋于一个确定的常数A,则称当n趋于无穷大时,数列{xn}以常数A为极限,或称数列收敛于A,记作 比如:

无限的趋向0

,无限的趋向1

否则,对于数列{xn},如果当n→∞时,xn不是无限地趋于一个确定的常数,称数列{xn}没有极限,如果数列没有极限,就称数列是发散的。 比如:1,3,5,?,(2n-1),? 1,0,1,0,?

数列极限的几何意义:将常数A及数列的项依次用数轴上的点表示,若数列{xn}以A为极限,就表示当n趋于无穷大时,点xn可以无限靠近点A,即点xn与点A之间的距离|xn-A|趋于0。 比如:

无限的趋向0 无限的趋向1

1 / 16

(二)数列极限的性质与运算法则 1.数列极限的性质

定理1.1(惟一性)若数列{xn}收敛,则其极限值必定惟一。 定理1.2(有界性)若数列{xn}收敛,则它必定有界。

注意:这个定理反过来不成立,也就是说,有界数列不一定收敛。比如: 1,0,1,0,?有界:0,1 2.数列极限的存在准则

定理1.3(两面夹准则)若数列{xn},{yn},{zn}满足以下条件: (1)

(2), 则

定理1.4若数列{xn}单调有界,则它必有极限。 3.数列极限的四则运算定理。 定理1.5

(1)(2)(3)当

时,

(三)函数极限的概念

1.当x→x0时函数f(x)的极限 (1)当x→x0时f(x)的极限 定义对于函数y=f(x),如果当x无限地趋于x0时,函数f(x)无限地趋于一个常数A,则称当x→x0时,函数f(x)的极限是A,记作 或f(x)→A(当x→x0时)

例y=f(x)=2x+1 x→1,f(x)→? x<1x→1

x>1x→1

(2)左极限

当x→x0时f(x)的左极限 定义对于函数y=f(x),如果当x从x0的左边无限地趋于x0时,函数f(x)无限地趋于一个常数A,则称当x→x0时,函数f(x)的左极限是A,记作

或f(x0-0)=A

(3)右极限

当x→x0时,f(x)的右极限 定义对于函数y=f(x),如果当x从x0的右边无限地趋于x0时,函数f(x)无限地趋于一个常数A,则称当x→x0时,函数f(x)的右极限是A,记作 或f(x0+0)=A

例子:分段函数

,求

2 / 16

解:当x从0的左边无限地趋于0时f(x)无限地趋于一个常数1。我们称当x→0时,f(x)的左极限是1,即有

当x从0的右边无限地趋于0时,f(x)无限地趋于一个常数-1。我们称当x→0时,f(x)的右极限是-1,即有

显然,函数的左极限右极限与函数的极限之间有以下关系: 定理1.6当x→x0时,函数f(x)的极限等于A的必要充分条件是

反之,如果左、右极限都等于A,则必有

x→1时f(x)→? x≠1

x→1f(x)→2

对于函数

,当x→1时,f(x)的左极限是2,右极限也是2。

2.当x→∞时,函数f(x)的极限 (1)当x→∞时,函数f(x)的极限 y=f(x)x→∞f(x)→? y=f(x)=1+

→1

x→∞f(x)=1+

定义对于函数y=f(x),如果当x→∞时,f(x)无限地趋于一个常数A,则称当x→∞时,函数f(x)的极限是A,记作

或f(x)→A(当x→∞时)

(2)当x→+∞时,函数f(x)的极限 定义对于函数y=f(x),如果当x→+∞时,f(x)无限地趋于一个常数A,则称当x→+∞时,函数f(x)的极限是A,记作

这个定义与数列极限的定义基本上一样,数列极限的定义中n→+∞的n是正整数;而在这个定义中,则要明确写出x→+∞,且其中的x不一定是正整数,而为任意实数。 y=f(x)x→+∞f(x)x→?

3 / 16

x→+∞,f(x)=2+→2

-x

例:函数f(x)=2+e,当x→+∞时,f(x)→? 解:f(x)=2+e=2+x→+∞,f(x)=2+

-x

, →2

所以

(3)当x→-∞时,函数f(x)的极限 定义对于函数y=f(x),如果当x→-∞时,f(x)无限地趋于一个常数A,则称当x→-∞时,f(x)的极限是A,记作

x→-∞f(x)→? 则f(x)=2+(x<0) x→-∞,-x→+∞ f(x)=2+

→2

例:函数,当x→-∞时,f(x)→? 解:当x→-∞时,-x→+∞

→2,即有

由上述x→∞,x→+∞,x→-∞时,函数f(x)极限的定义,不难看出:x→∞时f(x)的极限是A充分必要条件是当x→+∞以及x→-∞时,函数f(x)有相同的极限A。 例如函数

,当x→-∞时,f(x)无限地趋于常数1,当x→+∞时,f(x)也无限

的极限是1,记作

地趋于同一个常数1,因此称当x→∞时

其几何意义如图3所示。

f(x)=1+

y=arctanx

不存在。

4 / 16

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4