细胞生物学复习题(含答案) - 图文

1.简述细胞生物学的基本概念,以及细胞生物学发展的主要阶段。

以细胞为研究对象,经历了从显微水平到亚显微和分子水平的发展过程,研究细胞结构与功能从而探索细胞生长 发育繁殖遗传变异代谢衰老及进化等各种生命现象的规律的科学;主要阶段:①细胞的发现与细胞学说的创立 ②光学显微镜下的细胞学研究 ③实验细胞学研究 ④亚显微结构与分子水平的细胞生物学。 2. 简述细胞学说的主要内容。

施莱登和施旺提出一切生物,从单细胞生物到高等动物和植物均有细胞组成,细胞是生物形态结构和功能活动的基本单位。魏尔肖后来对细胞学说作了补充,强调细胞只能来自原来的细胞。

3. 简述原核细胞的结构特点。

1). 结构简单

DNA为裸露的环状分子,无膜包裹,形成拟核。 细胞质中无膜性细胞器,含有核糖体。 2). 体积小 直径约为1到数个微米。 4. 简述真核细胞和原核细胞的区别。

5. 简述DNA的双螺旋结构模型。

① DNA分子由两条相互平行而方向相反的多核苷酸链组成。②两条链围绕着同一个中心轴以右手方向盘绕成双螺旋结构。③螺旋的主链由位于外侧的间隔相连的脱氧核糖和磷酸组

成,内侧为碱基构成。④两条多核苷酸链之间依据碱基互补原则相连螺旋内每一对碱基均位于同一平面上并且垂直于螺旋纵轴,相邻碱基对之间距离为0.34nm,双螺旋螺距为3.4nm。 6. 蛋白质的结构特点。

以独特的三维构象形式存在,蛋白质三维构象的形成主要由其氨基酸的顺序决定,是氨基酸组分间相互作用的结果。一级结构是指蛋白质分子氨基酸的排列顺序,氨基酸排列顺序的差异使蛋白质折叠成不同的高级结构。二级结构是由主链内氨基酸残基之间氢键形成,有两种主要的折叠方式a-螺旋和β-片层。在二级结构的基础上进一步折叠形成三级结构,不同侧键间互相作用方式有氢键,离子键和疏水键,具有三级结构既表现出了生物活性。三级结构的多肽链亚单位通过氢键等非共价键可形成更复杂的四级结构。 7. 生物膜的主要化学组成成分是什么?

膜脂(磷脂,胆固醇,糖脂),膜蛋白,膜糖 8. 什么是双亲性分子(兼性分子)?举例说明。

既含有亲水头部又含有疏水的尾部的分子,如磷脂一端为亲水的磷酸基团,另一端为疏水的脂肪链尾。

9. 膜蛋白的三种类型。

膜内在蛋白(整合蛋白),膜外在蛋白,脂锚定蛋白

10. 细胞膜的主要特性是什么?膜脂和膜蛋白的运动方式分别有哪些? 细胞膜的主要特性:膜的不对称性和流动性; 膜脂翻转运动,旋转运动,侧向扩散,弯曲运动,伸缩和振荡运动。 膜蛋白旋转运动和侧向扩散。 11. 影响膜脂流动的主要因素有哪些?

①脂肪酸链的饱和程度,不饱和脂肪酸越多,相变温度越低其流动性也越大。 ②脂肪酸链的长短,脂肪酸链短的相变温度低,流动性大。 ③胆固醇的双重调节,当温度在相变温度以上时限制膜的流动性起稳定质膜的作用,在相变温度以下时防止脂肪酸链相互凝聚,干扰晶态形成。 ④卵磷脂与鞘磷脂的比例,比值越大流动性越大。 ⑤膜蛋白的影响,嵌入膜蛋白越多,膜脂流动性越小

⑥膜脂的极性基团、环境温度、pH值、离子强度及金属离子等均可对膜脂的流动性产生一定的影响。

12. 简述生物膜流动镶嵌模型的主要内容及其优缺点。

膜中脂双层构成膜的连贯主体,他们具有晶体分子排列的有序性,又有液体的流动性,膜中蛋白质以不同的方式与脂双层结合。优点,强调了膜的流动性和不对称性。缺点,但不能说明具有流动性性的质膜在变化过程中怎样保持完整性和稳定性,忽视了膜的各部分流动性的不均匀性。 13. 小分子物质的跨膜运输方式有哪几种?

被动运输:简单扩散,易化扩散,离子通道扩散。主动运输:ATP直接供能,ATP间接供能。 14. 简述被动运输与主动运输的区别。

被动运输不消耗细胞能量,顺浓度梯度或电化学梯度。主动运输逆电化学梯度运输,需要消耗能量,都有载体蛋白介导。

15. 大分子和颗粒物质的跨膜运输方式有哪几种?

胞吞作用(吞噬作用,胞饮作用,受体介导的胞吞作用)。 胞吐作用(连续性分泌作用,受调性分泌作用)

16. 简述小肠上皮细胞吸收葡萄糖的过程。

小肠上皮细胞顶端质膜中的Na+/葡萄糖协同运输蛋白,运输2个Na+的同时转运1个葡萄糖分子,使胞质内产生高葡萄糖浓度;质膜基底面和侧面的葡萄糖易化扩散运输蛋白,转运葡

萄糖离开细胞,形成葡萄糖的定向转运。Na+-K+泵将回流到细胞质中的Na+转运出细胞,维持Na+穿膜浓度梯度。

17 细胞表面的概念及其特化结构。

细胞与细胞外界环境直接接触的隔面。特殊结构是纤毛和微绒毛。 18简述粗面内质网的主要功能。

进行蛋白质的合成,加工修饰,分选及转运。 19附着核糖体和游离核糖体上合成的蛋白质类型。

附着核糖体①外输性或分泌性蛋白质②膜整合蛋白③细胞器中驻留蛋白质

游离核糖体①非定位分布的细胞质溶质驻留蛋白②定位性分布的胞质溶质蛋白③细胞核中的核蛋白④线粒体,质体等所必须的核基因组编码蛋白。 20以分泌蛋白为例简述蛋白质的向粗面内质网的运输过程。(信号肽?信号肽假说?) 信号肽:一段由不同数目、不同种类的氨基酸组成的疏水氨基酸序列,普遍地存在于所有分泌蛋白肽链的氨基端,是指导蛋白多肽链在糙面内质网上进行合成的决定因素。信号肽假说:新生分泌性蛋白质多肽链在细胞质基质中的游离核糖体上起始合成。新生肽链N端信号肽与SRP(信号识别颗粒)识别、结合,肽链延长受阻。信号肽结合的SRP,识别、结合内质网膜上的SRP受体,并介导核糖体锚泊于内质网膜的转运体易位蛋白上,肽链延伸继续进行。在信号肽引导下,肽链穿膜进入内质网腔,信号肽被切除,肽链继续延伸,直至合成完成。 21简述滑面内质网的功能。 ①是细胞解毒的主要场所②参与脂质的合成和转运③是肌细胞钙离子的储存场所④参与糖原的代谢⑤与胃酸,胆汁的合成与分泌密切相关。 22从形态结构、化学组成和功能三个方面详述高尔基复合体是极性细胞器。 ①顺面高尔基网:近内质网的一侧,呈连续分支的管网状结构,可被标志性的化学反应——嗜锇反应显示。功能:分选来自内质网的蛋白质和脂类;进行蛋白质糖基化和酰基化修饰。②高尔基中间膜囊:位于顺面高尔基网状结构和反面高尔基网状结构之间的多层间隔囊、管结构复合体系,可被标志性的化学反应——NADP酶反应显示。功能:进行糖基化修饰和多糖及糖脂的合成。③反面高尔基网:朝向细胞膜一侧,在其形态结构和化学特性上具有细胞的差异性和多样性。功能:蛋白质分选和修饰。 23简述高尔基体的功能。 ①是细胞内蛋白质运输分泌的中转站②是胞内物质加工合成的重要场所③是胞内蛋白质的分选和膜泡定向运输的枢纽。 24蛋白质糖基化的类型及其场所?举例说明糖基化的意义?

N—连接糖蛋白 O—连接糖蛋白 糖基化发生部位 粗面内质网 高尔基复合体 连接基团 –NH2 --OH 糖基化方式 寡糖链一次性连接 单糖基逐个添加 意义:①糖基化对蛋白质具有保护作用,使它们免遭水解酶的降解;②具有运输信号的作用,引导蛋白质包装形成运输小泡,以便进行蛋白质的靶向运输;③糖基化形成细胞膜表面的糖被,在细胞膜的保护、识别以及通讯联络等生命活动中发挥重要作用。 25溶酶体的共同特征 ①都是由一层单位膜包裹而成的囊球状结构小体②均含有丰富的酸性水解酶,是溶酶体的标志酶③溶酶体膜腔面富含高度糖基化的穿膜整合蛋白,可防止溶酶体酶对自身膜结构的消化分解④溶酶体膜上嵌有质子泵,可将H+泵入溶酶体中,维持溶酶体酸性内环境。 26简述溶酶体形成与成熟过程。

①酶蛋白在内质网合成并糖基化形成带有甘露糖的糖蛋白;②甘露糖糖蛋白转运至高尔基复合体形成面,被磷酸化形成溶酶体酶的分选信号M-6-P(甘露糖-6-磷酸);③在反面高尔基网腔面,被M-6-P受体识别,包裹形成网格蛋白有被小泡;④有被小泡脱被形成无被小泡

与胞内晚期内吞体结合成内体性溶酶体;⑤在前溶酶体膜上质子泵作用下形成酸性内环境,溶酶体酶与M-6-P受体解离,去磷酸化而成熟。 27内膜系统各细胞器的主要标志性酶?

内质网——葡萄糖—6--磷酸酶 高尔基体——糖基转移酶

溶酶体——酸性磷酸酶 过氧化物酶体——过氧化氢酶 28细胞内转运囊泡的类型及其功能?

①网格蛋白有被小泡的功能:a高尔基复合体网格蛋白小泡介导从高尔基复合体向溶酶体、胞内体或质膜外的物质转运。b细胞内吞作用形成的网格蛋白小泡将外来物质转送到细胞质或溶酶体。②copⅠ有被小泡功能:捕捉、回收转运内质网逃逸蛋白;逆向运输高尔基复合体膜内蛋白;行使从内质网到高尔基复合体的顺向转移。③copⅡ有被小泡功能:介导从内质网到高尔基复合体的物质转运。 29细胞骨架的组成?

微管,微丝,中间纤维

30微丝、微管的装配过程?踏车运动?微管组织中心。

一. 微丝装配过程:①成核期 微丝组装的限速过程。②聚合期 肌动蛋白在核心两端聚合,正端快,负端慢。③稳定期 聚合速度与解离速度达到平衡。

二. 微管装配过程:①成核期 管蛋白聚合成短的寡聚体 (核心 ) 片状 微管②聚合期 聚合速度大于解聚速度。③稳定期 聚合速度等于解聚速度。

三.在微丝装配时,肌动蛋白分子添加到肌动蛋白丝上的速率正好等于肌动蛋白分子从肌动蛋白丝上解离速率时,微丝净长度没有改变,这一现象称为踏车运动。

四.微管组织中心(MTOC)在活细胞内,能够起始微管的成核作用,并使之延伸的细胞结构,称为微管组织中心。如中心体、基体等

31微管在细胞中的三种不同存在形式及其特点。 在细胞中有三种存在形式:单管、二联管和三联管。

单管:由13根原纤维组成,是细胞质中常见的形式,其结构不稳定易受环境因素影响而降解。

二联管:由A,B两个单管组成,A管有13根原纤维,B管有10根原纤维,与A管共用3根原纤维,主要分布于纤毛和鞭毛内。

三联管:由A,B,C三个单管组成,A管有13根原纤维,B、C各有10根原纤维,主要分布于中心粒、鞭毛和纤毛的基体中。

32微丝、微管的特异性药物分别有哪些,它们的作用分别是什么?

秋水仙素、长春新碱抑制微管装配。紫杉醇能促进微管的装配,并使已形成的微管稳定。 细胞松弛素:抑制微丝的聚合,对微管无作用。鬼笔环肽:同聚合的微丝结合后,抑制微丝的解体。 33详述微管的主要生物学功能。

(一) 支持和维持细胞的形态

微管具有一定的强度,能够抗压和抗弯曲,给细胞提供机械支持力,是支撑和维持细胞形状的主要物质。

(二) 参与中心粒、纤毛和鞭毛的形成

1. 中心粒和中心粒旁物质构成中心体

2.纤毛与鞭毛是细胞表面的运动器官,二者结构基本相同,在电镜下都可见9+2的结构,中央为一组二联微管称为中央微管,周围有9组二联微管。 (三) 参与细胞内物质运输

细胞内的细胞器移动和胞质中的物质转运都和微管有着密切的关系,具体功能由马达蛋白来完成。马达蛋白是指介导细胞内物质沿细胞骨架运输的蛋白。

主要分三大类

动力蛋白 将物质沿微管运输 驱动蛋白 肌球蛋白 将物质沿微丝运输 (四) 维持细胞内细胞器的定位和分布

①线粒体的分布与微管相伴随;② 游离核糖体附着于微管和微丝的交叉点上;③ 内质网沿微管在细胞质中展开分布;④ 高尔基体沿微管向核区牵拉,定位于细胞中央。 (五) 参与染色体的运动,调节细胞分裂

微管是构成有丝分裂器的主要成分,可介导染色体的运动,从而调节细胞分裂。 (六) 参与细胞内信号传导

微管参与hedgehog、JNK、Wnt、ERK及PAK蛋白激酶信号转导通路。信号分子可直接与微管作用或通过马达蛋白和一些支架蛋白来与微管作用。

34中间纤维的包装及其特点。

两个平行排列的中间纤维蛋白分子形成螺旋状的二聚体;由两个二聚体反向-平行排列成一个四聚体;两个四聚体组装成一个八聚体,八个四聚体组装成中间纤维。特点:直径10nm左右,介于微丝和微管之间,是最稳定的细胞骨架成分。 35核膜的结构、特点及功能。

电镜下,核膜是由内外层核膜、核周隙、核孔复合体和核纤层等结构组成。外核膜与糙面内质网相连。内核膜表面光滑包围核质。核周隙为内外两层核膜之间的缓冲区;核孔复合体是由多种蛋白质构成的复合结构。核纤层是紧贴内核膜的纤维蛋白网。功能:核膜为基因表达提供了时空隔离屏障,参与蛋白质的合成,核孔复合体控制着核-质间的物质交换。 36核孔复合体的捕鱼笼式结构模型。

核孔复合体由胞质环、核质环、辐和中央栓四部分组成。

① 胞质环位于位于核孔复合体结构边缘胞质面一侧的环状结构,与柱状亚单位相连,环上对称分布8条短纤维,并伸向细胞质 。 ② 核质环位于核孔复合体结构边缘核质面一侧的孔环状结构,与柱状亚单位相连,在环上也对称分布8条纤维伸向核内,纤维末端形成一个由8个颗粒组成的小环,构成捕鱼笼似的结构 ,称“核篮”。

③ 辐由三部分组成a柱状亚单位:位于核孔边缘,连接胞质环与核质环,起到支撑核孔的作用;b腔内亚单位:穿过核膜伸入核周间隙,起锚定作用;c环状亚单位:在柱状亚单位内侧靠近核孔中央,是核-质交换的通道。

④ 中央栓位于核孔中央,呈棒状或颗粒状,其在核质交换中发挥一定的作用。 37核纤层蛋白的分类及其特点。

分类:核纤层蛋白A和C(仅见与分化细胞中);核纤层蛋白B(所有体细胞) 功能:①在细胞核中起支架作用②与核膜的崩解和重建密切相关。③与染色质凝集成染色体有关④参与DNA复制。

38. 真核细胞组蛋白如何分类?在染色体组装中各起什么作用?

用聚丙烯酰胺凝胶电泳可将组蛋白分离成5种,即H1、H2A、H2B、H3和H4。5种组蛋白在染色质的分布与功能上存在差异,可分为①核小体组蛋白包括H2A、H2B、H3和H4。无种属及组织特异性,进化上高度保守;协助DNA卷曲成核小体的稳定结构。②连接组蛋白(H1组蛋白):有种属特异性与组织特异性。与核小体的进一步包装有关。核小体组蛋白H2A 、 H2B、H3和H4各两分子组成八聚体;146bp(碱基对)的DNA分子盘绕组蛋白八聚体1.75圈,形成核小体;两个相邻核小体之间以连接DNA相连,典型长度为60bp;组蛋白H1结合于连接DNA,位于核小体核心DNA双链的进出端,起稳定核小体的作用。 39. 染色体DNA分子的三种功能序列及其作用?

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4