2011高教社杯全国大学生数学建模竞赛
承 诺 书
我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。矚慫润厲钐瘗睞枥庑赖。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。聞創沟燴鐺險爱氇谴净。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。残骛楼諍锩瀨濟溆塹籟。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): B 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员 (打印并签名) :1. 2.
3.
指导教师或指导教师组负责人 (打印并签名):
日期:2011 年 9月 12 日
赛区评阅编号(由赛区组委会评阅前进行编号):
2011高教社杯全国大学生数学建模竞赛
编 号 专 用 页
评 阅 人 评 分 备 注 赛区评阅编号(由赛区组委会评阅前进行编号):
赛区评阅记录(可供赛区评阅时使用):
全国统一编号(由赛区组委会送交全国前编号):
全国评阅编号(由全国组委会评阅前进行编号):
交巡警服务平台的设置和调度
摘要
“有困难找警察”,是家喻户晓的一句流行语。警察肩负着刑事执法、治安管理、交通管理、服务群众四大职能。为了更有效地贯彻实施这些职能,需要在市区的一些交通要道和重要部位设置交巡警服务平台。本文通过定性与定量分析、建立优化模型,为交巡警服务平台的设置和调度提供参考。酽锕极額閉镇桧猪訣锥。 在第一个问题中,选择Dijkstra最短路径算法,利用Matlab软件,先根据城区A交通路口的路线,求出表示各节点之间是否直接相连的0-1矩阵,然后根据城区A各节点坐标求出城区A各节点距离的权值矩阵(若两节点内无路则权值为无穷大),接着把权值矩阵化为最短距离矩阵。根据需要变化最短距离矩阵,建立0-1规划模型,目标是使得出警时间最短(转化为出警距离最短计算),列出最优化方程,最后利用Lingo软件进行求解,得出服务平台管辖路口节点以及堵截路口的最合理方案。综合考虑交巡警服务平台的发案率和出警时间,采用动态加权平均的方法算出各个交巡警服务平台的忙碌值。然后进行排名。取大于平均值的前九名,在城区A增加2~5个服务平台时,综合这些节点周围交通节点的密集程度,决定在A区增加三个服务平台,分别为A20附近的节点90(440.5,381.5),A1、A2和A3区域内的节点67(401,359),A4和A5区域内的节点56(354,374)。彈贸摄尔霁毙攬砖卤庑。 在第二个问题中,首先对各城区现有平台设置的合理性进行评估。引入负荷距离法、方差分析法,求得方差、偏差距离、单位平台处理案件数等参数,得出结论:城区C、F服务平台的负担太大,而且警力配置不均匀;城区D、E服务平台的地理分布与发案的地理分布相差较大,不能及时赶到发案地点。再针对各个地区的不同情况(人口、面积、发案率、平台分布疏密程度),经过科学分析,得出方案为:C区增加节点305(200,487)、节点300(206,507)、节点207(333,511)为三个新服务平台,F区增加节点506(358,195)、节点522(371,244)为两个新的服务平台;D区中位于坐标为(70,377)的服务平台D3移动到节点360(76.355),E区中位于坐标为(90,198)的服务平台E15移动到节点422(74,198)。最后通过比较调度前后的该城区的偏差距离、方差、单位平台处理按键数的变化,评估解决方案的合理性。
謀荞抟箧飆鐸怼类蒋薔。 在围堵犯罪嫌疑人的时候,采用画树状图的方法,以三分钟为一个层次,结合概率知识。无论他选择从哪条路出城,得出的围堵方案都能在报警后六分钟之内抓住犯罪嫌疑人。具体方案为:第一个三分钟出动服务平台A5、A6、A10、A15、A16、A2、A3、A4、A17、C8、C6、C4、C7和F1,分别派往节点5、6、10、15、16、3、55、60、41、232、244、240、242、561进行围堵。第二个三分钟出动服务平台C2、C3、D1和 D2,分别派往节点248、168、349、369进行围堵。如果第一个三分钟时已经围堵到了犯罪嫌疑人,那就不用出动第二个三分钟的四个平台,可以节省警力,而且能确保抓住犯罪嫌疑人。厦礴恳蹒骈時盡继價骚。
关键字:Dijkstra最短路径算法0-1规划负荷距离法 方差树状图
1