2012年全国中考数学压轴题分类解析汇编专题7:几何三大变换相关问题 5

76. (2012辽宁铁岭12分)已知△ABC是等边三角形.

(1)将△ABC绕点A逆时针旋转角θ(0°<θ<180°),得到△ADE,BD和EC所在直线相交于点O.

①如图a,当θ=20°时,△ABD与△ACE是否全等? (填“是”或“否”),∠BOE= 度;

②当△ABC旋转到如图b所在位置时,求∠BOE的度数;

(2)如图c,在AB和AC上分别截取点B′和C′,使AB=3AB′,AC=3AC′,连接B′C′,将△AB′C′绕点A逆时针旋转角(0°<θ<180°),得到△ADE,BD和EC所在直线相交于点O,请利用图c探索∠BOE的度数,直接写出结果,不必说明理由.

77. 已知,在△ABC中,AB=AC。过A点的直线a从与边AC重合的位置开始绕点A按顺时针方向旋转角错误!未找到引用源。,直线a交BC边于点P(点P不与点B、点C重合),△BMN的边MN始终在直线a上(点M在点N的上方),且BM=BN,连接CN。 (1)当∠BAC=∠MBN=90°时,

①如图a,当错误!未找到引用源。=45°时,∠ANC的度数为_______;

②如图b,当错误!未找到引用源。≠45°时,①中的结论是否发生变化?说明理由; (2)如图c,当∠BAC=∠MBN≠90°时,请直接写出∠ANC与∠BAC之间的数量关系,不必证明。

- 6 -

78. (2012四川南充8分)在Rt△POQ中,OP=OQ=4,M是PQ中点,把一三角尺的直角顶点放在点M处,以M为旋转中心,旋转三角尺,三角尺的两直角边与⊿POQ的两直角边分别交于点A、B, (1)求证:MA=MB

(2)连接AB,探究:在旋转三角尺的过程中,△AOB的周长是否存在最小值,若存在,求出最小值,若不存在。请说明理由。

79. (2012广西贵港12分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+3的顶

点为M(2,

-1),交x轴于A、B两点,交y轴于点C,其中点B的坐标为(3,0)。 (1)求该抛物线的解析式;

(2)设经过点C的直线与该抛物线的另一个交点为D,且直线CD和直线CA关于直线BC

对称,求直线 CD的解析式;

(3)在该抛物线的对称轴上存在点P,满足PM2+PB2+PC2=35,求点P的坐标;并直接

写出此时直线

OP与该抛物线交点的个数。

- 7 -

80. (2012青海省12分)如图,在平面直角坐标系中,二次函数y=x+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点. (1)求这个二次函数的表达式.

(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由. (3)当点P运动到什么位置时,四边形ABPC的面积最大并求出此时P点的坐标和四边形ABPC的最大面积.

2

- 8 -

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4