时间序列预测技术
下面看看如何采用SPSS软件进行时间序列的预测
我们通过案例来说明:
假设我们拿到一个时间序列数据集:某男装生产线销售额。一个产品分类销售公司会根据过去 10 年的销售数据来预测其男装生产线的月销售情况。
现在我们得到了10年120个历史销售数据,理论上讲,历史数据越多预测越稳定,一般也要24个历史数据才行!
大家看到,原则上讲数据中没有时间变量,实际上也不需要时间变量,但你必须知道时间的起点和时间间隔。
当我们现在预测方法创建模型时,记住:一定要先定义数据的时间序列和标记!
这时候你要决定你的时间序列数据的开始时间,时间间隔,周期!在我们这个案例中,你要决定季度是否是你考虑周期性或季节性的影响因素,软件能够侦测到你的数据的季节性变化因子。
定义了时间序列的时间标记后,数据集自动生成四个新的变量:YEAR、QUARTER、MONTH和DATE(时间标签)。
接下来:为了帮我们找到适当的模型,最好先绘制时间序列。时间序列的可视化检查通常可以很好地指导并帮助我们进行选择。另外,我们需要弄清以下几点:
? 此序列是否存在整体趋势?如果是,趋势是显示持续存在还是显示将随时间而消逝? ? 此序列是否显示季节变化?如果是,那么这种季节的波动是随时间而加剧还是持续稳定存在?