原子力显微镜
摘要:光学显微镜、电子显微镜、扫描隧道显微镜,每一次重要显微技术的发展,都为科学和社会的进步作出了巨大的贡献。而原子力显微镜的出现,则使得对非导电材料表面结构的测量达到了一个新的精度。本文简要地阐述了原子力显微镜的原理,并使用原子力显微镜对四种不同材料的表面结构进行了测量。
关键词:原子力显微镜;表面粗糙度
1. 引言
在当今的科学技术中,如何观察、测量、分析尺寸小于可见光波长的物体,是一个重要的研究方向。 扫描隧道显微镜(STM) 使人们首次能够真正实时地观察到单个原子在物体表面的排列方式和与表面电子行为有关的物理、化学性质。但STM要求样品表面能够导电,从而使得STM只能直接观察导体和半导体的表面结构。为了克服STM 的不足之处,推出了原子力显微镜(AFM)。AFM是通过探针与被测样品之间微弱的相互作用力(原子力) 来获得物质表面形貌的信息。因此,AFM除导电样品外,还能够观测非导电样品的表面结构,且不需要用导电薄膜覆盖。对比于现有的其它显微工具,原子力显微镜以其高分辨、制样简单、操作易行等特点而备受关注,并已在生命科学、材料科学等领域发挥了重大作用,极大地推动了纳米科技的发展,促使人类进入了纳米时代。
2. 实验目的
1)了解原子力显微镜的工作原理。
2) 初步掌握用原子力显微镜进行表面观测的方法。
3.实验原理
1)AFM的工作原理和工作模式
(1)AFM的工作原理
在AFM中用一个安装在对微弱力极敏感的微悬臂上的极细探针。当探针与样品接触时,
由于它们原子之间存在极微弱的作用力(吸引或排斥力) ,引起微悬臂偏转。扫描时控制这种作用力恒定,带针尖的微悬臂将对应于原子间作用力的等位面,在垂直于样品表面方向上起伏运动, 因而会使反射光的位置改变而造成偏移量,通过光电检测系统(通常利用光学、电容或隧道电流方法) 对微悬臂的偏转进行扫描,测得微悬臂对应于扫描各点的位置变化, 此时激光检测器会记录此偏移量,也会把此时的信号给反馈系统,以利于系统做适当的调整。将信号放大与转换从而得到样品表面原子级的三维立体形貌图像。AFM 的核心部件是力的传感器
件, 包括微悬臂(Cantilever) 和固定于其一端的针尖。
根据物理学原理,施加到Cantilever 末端力的表达式为
F = KΔZ
式中,ΔZ 表示针尖相对于试样间的距离, K 为Can2tilever 的弹性系数,力的变化均可以通过Cantilever 被检测。
(2) AFM的关键部分
AFM关键部分是力敏感元件和力敏感检测装置。所以微悬臂和针尖是决定AFM灵敏度
的核心。为了能够准确地反映出样品表面与针尖之间微弱的相互作用力的变化,得到更真实的样品表面形貌,提高AFM 的灵敏度,微悬臂的设计通常要求满足下述条件: ①较低的力学弹性系数,使很小的力就可以产生可观测的位移; ②较高的力学共振频率; ③高的横向刚性,针尖与样品表面的摩擦不会使它发生弯曲; ④微悬臂长度尽可能短;⑤微悬臂带有能够通过光学、电容或隧道电流方法检测其动态位移的镜子或电极; ⑥针尖尽可能尖锐。
(3)AFM的工作模式
AFM 有三种不同的工作模式: 接触模式( contact mode) 、非接触模式
1接触模式 ○
(noncontact mode) 和共振模式或轻敲模式(Tapping Mode) 。
接触模式包括恒力模式(constant2force mode) 和恒高(constant2height mode) 。在恒力模式中过反馈线圈调节微悬臂的偏转程度不变,从而保证样品与针尖之间的作用力恒定,当沿x 、y 方向扫描时,记录Z 方向上扫描器的移动情况来得到样品的表面轮廓形貌图像。这种模式由于可以通过改变样品的上下高度来调节针尖与样品表面之间的距离,这样样品的高度值较准确,适用于物质的表面分析。在恒高模式中,保持样品与针尖的相对高度不变,直