spss练习题(答案及简要分析)

文章类型 生字密度

文章类型 * 生字密度 Error Total

Corrected Total

Dependent Variable: 测试数据

Mean (I) 生字密 LSD 度 B1 B2 B3 Based on observed means. * The mean difference is significant at the .05 level. Subset Student-Newman-Keuls(a,b) 生字密度 B1 B2 B3 Sig. term is Mean Square(Error) = 1.861.

a Uses Harmonic Mean Sample Size = 8.000. b Alpha = .05.

N 8 8 8 1 3.8750 1.000 2 6.0000 1.000 3 8.3750 1.000 测试数据

(J) 生字密度 B2 B3 B1 B3 B1 B2 Difference (I-J) -2.1250(*) -4.5000(*) 2.1250(*) -2.3750(*) 4.5000(*) 2.3750(*) Std. Error .68211 .68211 .68211 .68211 .68211 .68211 Sig. .006 .000 .006 .003 .000 .003 Lower Bound -3.5581 -5.9331 .6919 -3.8081 3.0669 .9419 Upper Bound -.6919 -3.0669 3.5581 -.9419 5.9331 3.8081 95% Confidence Interval 80.667 81.083 56.583 33.500 1140.000 251.833

1 2 2 18 24 23

80.667 40.542 28.292 1.861

43.343 21.784 15.201

.000 .000 .000

a R Squared = .867 (Adjusted R Squared = .830)

Multiple Comparisons

Means for groups in homogeneous subsets are displayed. Based on Type III Sum of Squares The error 由双因素分析的结果可知,文章类型的F检验的p=0.000<0.05,说明文章类型对该实验有显著性影响,生字密度F检验的p=0.000<0.05,因此,生字密度也对实验产生显著性影响 由事后检验的结果可知,B1与B2的p=0.006<0.05,二者之间存在显著性影响,B1和B3的p=0.000<0.05,因此二者之间也存在着显

著性影响;B2和B3之间的p=0.003<0.05,说明二者之间存在显著性影响

10、为研究学生的平时作文成绩x与高考作文成绩y的关系,随机抽取10名考生,数据见表8,试进行相关分析。表8 序号 x y 1 80 29 2 78 24 3 90 30 4 92 32 5 82 28 Correlations

高高作文 平时成绩 Pearson Correlation Sig. (2-tailed) N 高高作文成绩 Pearson Correlation Sig. (2-tailed) N 平时成绩 1 . 10 .869(**) .001 10 成绩 .869(**) .001 10 1 . 10 6 72 25 7 90 27 8 84 30 9 64 15 10 76 25 简单相关分析:Analyze - Correlate - Bivariate

** Correlation is significant at the 0.01 level (2-tailed).

由相关分析的结果可知两变量的相关系数为0.869,在这个数据旁边有两个星号,表示当显著性水平为0.01时,统计检验的显著性概率小于等于0.01,所以,平时成绩与高考作文成绩显著高度正相关。

11、一般来说物理成绩受数学成绩的影响较大,今收集到20名学生的物理、数学成绩,试建立用数学成绩预测物理成绩的回归方程。成绩见表9。表9 数学(x) 物理 (y) 数学(x) 物理 (y) 78 74 77 79 67 63 86 88 89 70 67 65 76 75 93 90 83 81 85 78 91 86 65 67 74 67 90 80 69 63 83 91 94 89 75 73 66 62 81 82 一元线性回归分析:Analyze - Regression - Linear

ScatterplotDependent Variable: 物理100908070物理60-2.0-1.5-1.0-.50.0.51.01.52.0Regression Standardized Predicted Value Model Summary(b)

Adjusted R Model 1 R .836(a) R Square .699 Square .683 Std. Error of the Estimate 5.46939 a Predictors: (Constant), 数学 b Dependent Variable: 物理

ANOVA(b)

Sum of Model 1 Regression Residual Total Squares 1252.095 538.455 1790.550 df 1 18 19 Mean Square 1252.095 29.914 F 41.856 Sig. .000(a) a Predictors: (Constant), 数学 b Dependent Variable: 物理

Coefficients(a)

Unstandardized Coefficients Model B Std. Error Standardized Coefficients Beta t Sig.

1 (Constant) 数学 8.184 .855 10.576 .132 .836 .774 6.470 .449 .000 a Dependent Variable: 物理 由散点图模型可知,两个因素之间存在一定的相关关系,由回归模型的拟合优度检验结果可知,相关系数R为0.836,,判定系数R2为0.699,校正判定系数为0.683,说明模型的拟合优度较好。由方差分析结果可知,显著性p=0.000<0.05,可以认为两因素之间有线性关系。从线性回归的系数分析结果可知,常数项显著性

p=0.449>0.05,说明该常数项应为0。因此重新选择去除常数项,即

Model Summary

R Model 1 R .998(b) Square(a) .995 Adjusted R Square .995 Std. Error of the Estimate 5.41132 a For regression through the origin (the no-intercept model), R Square measures the proportion of the variability in the dependent variable about the origin explained by regression. This CANNOT be compared

to R Square for models which include an intercept.

b Predictors: 数学 ANOVA(c,d)

Sum of Model 1 Regression Residual Total Squares 117210.634 556.366 117767.000(b) df 1 19 20 a Predictors: 数学 b This total sum of squares is not corrected for the constant because the constant is zero for regression

through the origin. c Dependent Variable: 物理 d Linear Regression through the Origin

Coefficients(a,b) Model Unstandardized Standardized t Sig. Mean Square 117210.634 29.282 F 4002.768 Sig. .000(a)

Coefficients B 1 数学 .957 Std. Error .015 Coefficients Beta .998 63.267 .000 a Dependent Variable: 物理 b Linear Regression through the Origin

由去除常数项后的分析可知,判定系数R2=0.995,矫正判定系数为0.995,模型拟合优度非常好。方差分析中,p=0.000<0.05,说明两因素存在统计学意义。由线性回归分析可得,该线性方程的系数的p=0.000<0.05,具有统计学意义,因此该线性回归方程为y=0.957x。

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4