小学五年级奥数举一反三1-40完整版

例题2 有一个长方体形状的零件,中间挖去一个正方体的孔(如图),你能算出它的体积和表面积吗?(单位:厘米)

分析 (1)先求出长方体的体积,8×5×6=240(立方厘米),由于挖去了一个孔,所以体积减少了2×2×2=8(立方厘米),这个零件的体积是240-8=232(立方厘米);

(2)长方体完整的表面积是(8×5+8×6+6×5)×2=236(平方厘米),但由于挖去了一个孔,它的表面积减少了一个(2×2)平方厘米的面,同时又增加了凹进去的5个(2×2)平方厘米的面,因此,这个零件的表面积是236+2×2×4=252(平方厘米)。

练习二

1,有一个形状如下图的零件,求它的体积和表面积。(单位:厘米)。

2,有一个棱长是4厘米的正方体,从它的一个顶点处挖去一个棱长是1厘米的正方体后,剩下物体的体积和表面积各是多少?

46

3,如果把上题中挖下的小正方体粘在另一个面上(如图),那么得到的物体的体积和表面积各是多少?

例题3 一个正方体和一个长方体拼成了一个新的长方体,拼成的长方体的表面积比原来的长方体的表面积增加了50平方厘米。原正方体的表面积是多少平方厘米?

分析 一个正方体和一个长方体拼成新的长方体,其表面积比原来的长方体增加了4块正方形的面积,每块正方形的面积是50÷4=12.5(平方厘米)。正方体有6个这样的面,所以,原来正方体的表面积是12.5×6=75(平方厘米)。

练习三

1,把两个完全一样的长方体木块粘成一个大长方体,这个大长方体的表面积比原来两个长方体的表面积的和减少了46平方厘米,而长是原来长方体的2倍。如果拼成的长方体的长是24厘米,那么它的体积是多少立方厘米?

2,一根长80厘米,宽和高都是12厘米的长方体钢材,从钢材的一端锯下一个最大的正方体后,它的表面积减少了多少平方厘米?

3,把4块棱长都是2分米的正方体粘成一个长方体,它们的表面积最多会减少多少平方分米?

例题4 把11块相同的长方体砖拼成一个大长方体。已知每块砖的体积是288立方厘米,

47

求大长方体的表面积。

分析 要求大长方体的表面积,必须知道它的长、宽和高。我们用a、b、h分别表示小长方体的长、宽、高,显然,a=4h,即h=1/4a,2a=3b即b=2/3a,砖的体积是

33

a*2/3a*1/4a=1/6a。由1/6a=288可知,a=12,b=2/3*12=8,h=1/4*12=3。

大长方体的长是12×2=24厘米,宽12厘米,高是8+3=11厘米,表面积就不难求了。

练习四

1,一块小正方体的表面积是6平方厘米,那么,由1000个这样的小正方体所组成的大正方体的表面积是多少平方厘米?

2,一个长方体的体积是385立方厘米,且长、宽、高都是质数,求这个长方体的表面积。

3,有24个正方体,每个正方体的体积都是1立方厘米,用这些正方体可以拼成几种不同的长方体?用图画出来。

例题5 一个长方体,前面和上面的面积之和是209平方厘米,这个长方体的长、宽、高以厘为为单位的数都是质数。这个长方体的体积和表面积各是多少?

分析 长方体的前面和上面的面积是长×宽+长×高=长×(宽+高),由于此长方体的长、宽、高用厘米为单位的数都是质数,所以有209=11×19=11×(17+2),即长、宽、高分别为11、17、2厘米。知道了长、宽、高求体积和表面积就容易了。

练习五

1,有一个长方体,它的前面和上面的面积和是88平方厘米,且长、宽、高都是质数,那么这个长方体的体积是多少?

2,一个长方体的长、宽、高是三个连续偶数,体积是96立方厘米,求它的表面积。 3,一个长方体和一个正方体的棱长之长相等,已知长方体长、宽、高分别是6分米、4分米、25分米,求正方体体积。

48

第十四周 长方体和正方体(二)

专题简析

在长方体、正方体问题中,我们还会常常遇到这样一些情况:

把一个物体变形为另一种形状的物体;把两个物体熔化后铸成一个物体;把一个物体浸入水中,物体在水中会占领一部分的体积。

解答上述问题,必须掌握这样几点:

1,将一个物体变形为另一种形状的物体(不计损耗),体积不变; 2,两个物体熔化成一个物体后,新物体的体积是原来物体体积的和; 3,物体浸入水中,排开的水的体积等于物体的体积。

例题1 有两个无盖的长方体水箱,甲水箱里有水,乙水箱空着。从里面量,甲水箱长40厘米,宽32厘米,水面高20厘米;乙水箱长30厘米,宽24厘米,深25厘米。将甲水箱中部分水倒入乙水箱,使两箱水面高度一样,现在水面高多少厘米?

分析 由于后来两个水箱里的水面的高度一样,我们可以这样思考:把两个水箱并靠在一起,水的体积就是(甲水箱的底面积+乙水箱的底面)×水面的高度。这样,我们只要先求出原来甲水箱中的体积:40×32×20=25600(立方厘米),再除以两只水箱的底面积和:40×32+30×24=2000(平方厘米),就能得到后来水面的高度。

练习一

1,有两个水池,甲水池长8分米、宽6分米、水深3分米,乙水池空着,它长6分米、宽和高都是4分米。现在要从甲水池中抽一部分水到乙水池,使两个水池中水面同样高。问水面高多少?

2,有一个长方体水箱,从面量长40厘米、宽30厘米、深35厘米,箱中水面高10厘米。放进一个棱长20厘米的正方体铁块后,铁块顶面仍高于水面。这时水面高多少厘米?

3,一段钢材长15分米,横截面面积是1.2平方分米。如果把它煅烧成一横截面面积是0.1平方分米的钢筋,求这根据钢筋的长。

例2 将表面积分别为54平方厘米、96平方厘米和150平方厘米的三个铁质正方体熔成一个大正方体(不计损耗),求这个大正方体的体积。

分析 因为正方体的六个面都相等,而54=6×9=6×(3×3),所以这个正方体的棱是3厘米。用同样的方法求出另两个正方体的棱长:96=6×(4×4),棱长是4厘米;

49

150=6×(5×5),棱长是5厘米。知道了棱长就可以分别算出它们的体积,这个大正方体的体积就等于它们的体积和。

练习二

1,有三个正方体铁块,它们的表面积分别是24平方厘米、54平方厘米和294平方厘米。现将三块铁熔成一个大正方体,求这个大正方体的体积。

2,将表面积分别为216平方厘米和384平方厘米的两个正方体铁块熔成一个长方体,已知这个长方体的长是13厘米,宽7厘米,求它的高。

3,把8块边长是1分米的正方体铁块熔成一个大正方体,这个大正方体的表面积是多少平方分米?

例题3 有一个长方体容器,从里面量长5分米、宽4分米、高6分米,里面注有水,水深3分米。如果把一块边长2分米的正方体铁块浸入水中,水面上升多少分米?

分析 铁块的体积是2×2×2=8(立方分米),把它浸入水中后,它就占了8立方分米的空间,因此,水上升的体积也就是8立方分米,用这个体积除以底面积(5×4)就能得到水上升的高度了。

练习三

1,有一个小金鱼缸,长4分米、宽3分米、水深2分米。把一块假山石浸入水中后,水面上升0.8分米。这块假山石的体积是多少立方分米?

2,有一个正方体容器,边长是24厘米,里面注满了水。有一根长50厘米,横截面是12平方厘米的长方形的铁棒,现将铁棒垂直插入水中。问:会溶出多少立方厘米的水?

3,有一块边长是5厘米的正方体铁块,浸没在一个长方体容器里的水中。取出铁后,水面下降了0.5厘米。这个长方体容器的底面积是多少平方厘米?

50

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4