必修四平面向量数量积的坐标表示、模、夹角(附答案)

平面向量数量积的坐标表示、模、夹角

[学习目标] 1.理解两个向量数量积坐标表示的推导过程,能运用数量积的坐标表示进行向量数量积的运算.2.能根据向量的坐标计算向量的模,并推导平面内两点间的距离公式.3.能根据向量的坐标求向量的夹角及判定两个向量垂直.

知识点一 平面向量数量积的坐标表示 若a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2. 即两个向量的数量积等于相应坐标乘积的和.

思考 已知两个非零向量a=(x1,y1),b=(x2,y2),怎样用a与b的坐标表示a·b?上述结论是怎样推导的?

答案 推导:∵a=x1i+y1 j,b=x2i+y2 j, ∴a·b=(x1i+y1 j)·(x2i+y2 j) =x1x2i2+x1y2i·j+x2y1 j·i+y1y2 j2. 又∵i·i=1,j·j=1,i·j=j·i=0, ∴a·b=x1x2+y1y2. 知识点二 平面向量的模

2(1)向量模公式:设a=(x1,y1),则|a|=x21+y1.

(2)两点间距离公式:若A(x1,y1),B(x2,y2), →

则|AB|=?x2-x1?2+?y2-y1?2.

思考 设A(x1,y1),B(x2,y2)为平面内任意两点,试推导平面内两点间的距离公式. →→→

答案 推导:∵AB=OB-OA =(x2,y2)-(x1,y1) =(x2-x1,y2-y1), →

∴|AB|=?x2-x1?2+?y2-y1?2. 知识点三 平面向量夹角的坐标表示

设a,b都是非零向量,a=(x1,y1),b=(x2,y2),θ是a与b的夹角,根据向量数量积的定义及坐标表示可得:

x1x2+y1y2a·b

cos θ==222. |a||b|x1+y1·x22+y2

特别地,若a⊥b,则有x1x2+y1y2=0; 反之,若x1x2+y1y2=0,则a⊥b.

思考 (1)已知向量a=(-2,1),b=(1,x),a⊥b则x=________. (2)若a=(3,0),b=(-5,5),则a与b的夹角为________.

(3)已知A(1,2),B(2,3),C(-2,5),则△ABC的形状是________三角形. 3

答案 (1)2 (2)π (3)直角

4

题型一 平面向量数量积的坐标运算 例1 已知a与b同向,b=(1,2),a·b=10. (1)求a的坐标;

(2)若c=(2,-1),求a(b·c)及(a·b)c.

解 (1)设a=λb=(λ,2λ) (λ>0),则有a·b=λ+4λ=10, ∴λ=2,∴a=(2,4). (2)∵b·c=1×2-2×1=0, a·b=1×2+2×4=10, ∴a(b·c)=0a=0,

(a·b)c=10(2,-1)=(20,-10).

跟踪训练1 已知a=(-3,-2),b=(-4,k),若(5a-b)·(b-3a)=-55,试求b的坐标. 解 ∵a=(-3,-2),b=(-4,k), ∴5a-b=(-11,-10-k). b-3a=(5,k+6),

∴(5a-b)·(b-3a)=(-11,-10-k)·(5,k+6) =-55-(k+10)(k+6)=-55, ∴(k+10)(k+6)=0, ∴k=-10或k=-6,

∴b=(-4,-10)或b=(-4,-6). 题型二 平面向量的夹角问题

例2 已知a=(1,2),b=(1,λ),分别确定实数λ的取值范围,使得:(1)a与b的夹角为直角;(2)a与b的夹角为钝角;(3)a与b的夹角为锐角. 解 设a与b的夹角为θ, 则a·b=(1,2)·(1,λ)=1+2λ.

(1)因为a与b的夹角为直角,所以cos θ=0, 1所以a·b=0,所以1+2λ=0,所以λ=-.

2

(2)因为a与b的夹角为钝角,所以cos θ<0且

>>闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧湱鈧懓瀚崳纾嬨亹閹烘垹鍊炲銈嗗笒椤︿即寮查鍫熷仭婵犲﹤鍟扮粻缁橆殽閻愭潙鐏村┑顔瑰亾闂侀潧鐗嗛幊鎰邦敊婵犲倵鏀介幒鎶藉磹閹版澘纾婚柟鎯у濡垶鏌熼鍡楃灱閸氬姊洪崫鍕効缂傚秳绶氶悰顕€宕堕澶嬫櫖闂佹寧绻傚Λ宀勫箰閸涱喚绡€闁汇垽娼ф禒婊勪繆椤栨熬鏀荤紒鍌氱Т楗即宕煎┑鍫О闂備線鈧偛鑻晶顔姐亜椤忓嫬鏆e┑鈥崇埣瀹曞崬螖閳ь剝銆栫紓鍌氬€搁崐鍝ョ矓閺夋嚦娑樜旈埀顒勬偝婵犳艾閿ゆ俊銈勭娴滄粓姊虹粙璺ㄧ闁汇劎鍏橀獮蹇涙惞閸︻厾锛滅紓鍌欓檷閸ㄥ綊鐛弽顓熺厵闁告劘灏欑粻娲煏閸ャ劌濮屾い锕€顕槐鎺撴綇閵娿儲璇為梺璇″枓閺呯姴鐣峰鈧幊鐘活敄閹稿骸浜濈紓鍌氬€搁崐椋庢閿熺姴绐楅柡宥庡幗閸嬪鏌熼幆褏锛嶉柡鍡畵閺岀喖鎮滃鍡樼暦闂佺ǹ锕﹂崗姗€骞冨Δ鍛仺闁谎嗩嚙濠€閬嶅极椤曗偓楠炲棜顦柡鈧禒瀣厽婵☆垵娅f禒娑㈡煛閸″繑娅呴柍瑙勫灴椤㈡瑧鍠婇崡鐐搭啀闂備胶鎳撶粻宥夊垂绾懐浜藉┑鐐存尰閸戝綊宕归幎钘夌劦妞ゆ帒鍟悡鎰版煏閸パ冾伃鐎殿喗娼欒灃闁逞屽墯缁傚秵銈i崘鈹炬嫼闂佸憡绻傜€氼噣鎮炵捄銊х<闁哄被鍎抽悾鐑橆殽閻愬弶顥㈢€殿噮鍣e畷濂割敃閿濆棙鐝┑鐘垫暩閸嬬偤宕归崼鏇熸櫇闁冲搫鍊搁閬嶆煥閻曞倹瀚�<<
12@gma联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4