初等数论试卷

故同余方程x2≡42(mod 107)有解。

3、求(127156+34)28除以111的最小非负余数。 解:易知1271≡50(mod 111)。

由502 ≡58(mod 111), 503 ≡58×50≡14(mod 111),509≡143≡80(mod 111)知5028 ≡(509)3×50≡803×50≡803×50≡68×50≡70(mod 111) 从而5056 ≡16(mod 111)。

故(127156+34)28≡(16+34)28 ≡5028≡70(mod 111) 三、证明题

1、已知p是质数,(a,p)=1,证明:

(1)当a为奇数时,ap-1+(p-1)≡0 (mod p); (2)当a为偶数时,ap-1-(p-1)≡0 (mod p)。

证明:由欧拉定理知ap-1≡1 (mod p)及(p-1)≡-1 (mod p)立得(1)和(2)成立。

2、设a为正奇数,n为正整数,试证a2na

aa

≡1(mod 2n+2)。 …………… (1)

证明 设a = 2m ? 1,当n = 1时,有

a2 = (2m ? 1)2 = 4m(m ? 1) ? 1 ? 1 (mod 23),即原式成立。 设原式对于n = k成立,则有

2其中q?Z,所以 ak?1a2k? 1 (mod 2k + 2) ?a2= 1 ? q2k + 2,

k= (1 ? q2k + 2)2 = 1 ? q ?2k + 3 ? 1 (mod 2k + 3),

其中q ?是某个整数。这说明式(1)当n = k ? 1也成立。 由归纳法知原式对所有正整数n成立。

k

3、设p是一个素数,且1?k?p-1。证明:Ckp?1 ? (-1 )(mod p)。

(p?1)(p?2)?(p?k) 证明:设A=Ckp?1? 得:

k! k!·A =(p-1)(p-2)…(p-k)≡(-1)(-2)…(-k)(mod p)

k

又(k!,p)=1,故A = Ckp?1 ? (-1 )(mod p)

4、设p是不等于3和7的奇质数,证明:p6≡1(mod 84)。 说明:因为84=4×3×7,所以,只需证明:

p6≡1(mod 4) p6≡1(mod3) p6≡1(mod 7) 同时成立即可。 证明:因为84=4×3×7及p是不等于3和7的奇质数,所以

(p,4)=1,(p,3)=1,(p,7)=1。

由欧拉定理知:p?(4)≡p2≡1(mod 4),从而 p6≡1(mod 4)。

同理可证:p6≡1(mod3) p6≡1(mod 7)。 故有p6≡1(mod 84)。

注:设p是不等于3和7的奇质数,证明:p6≡1(mod 168)。(见赵继源p86)

初等数论练习题二

一、填空题

1、d(1000)=_16_;σ(1000)=_2340_. 2、2010!的标准分解式中,质数11的次数是199__. 3、费尔马(Fermat)数是指Fn=22+1,这种数中最小的合数Fn中的n=5。 4、同余方程13x≡5(mod 31)的解是x≡29(mod 31)___ 5、分母不大于m的既约真分数的个数为?(2)+ ?(3)+…+ ?(m)。 6、设7∣(80n-1),则最小的正整数n=_6__. 7、使41x+15y=C无非负整数解的最大正整数C=__559__. 8、??46??=_1__. 101??n9、若p是质数,n?p ? 1,则同余方程x n ? 1 (mod p) 的解数为n . 二、计算题

20031、试求20022004被19除所得

>>展开全文<<
12@gma联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4