备战中考数学备考之锐角三角函数压轴突破训练∶培优易错试卷篇附详细答案(1)

备战中考数学备考之锐角三角函数压轴突破训练∶培优易错试卷篇附详细答案

(1)

一、锐角三角函数

1.如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.

(1)求∠BPQ的度数;

(2)求该电线杆PQ的高度(结果精确到1m).备用数据:【答案】(1)∠BPQ=30°; (2)该电线杆PQ的高度约为9m. 【解析】

试题分析:(1)延长PQ交直线AB于点E,根据直角三角形两锐角互余求得即可; (2)设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x表示出AE和BE,根据AB=AE-BE即可列出方程求得x的值,再在直角△BQE中利用三角函数求得QE的长,则PQ的长度即可求解.

试题解析:延长PQ交直线AB于点E,

(1)∠BPQ=90°-60°=30°; (2)设PE=x米. 在直角△APE中,∠A=45°, 则AE=PE=x米; ∵∠PBE=60° ∴∠BPE=30° 在直角△BPE中,BE=∵AB=AE-BE=6米, 则x-33PE=x米, 333x=6, 3解得:x=9+33. 则BE=(33+3)米. 在直角△BEQ中,QE=33BE=(33+3)=(3+3)米. 33∴PQ=PE-QE=9+33-(3+3)=6+23≈9(米). 答:电线杆PQ的高度约9米.

考点:解直角三角形的应用-仰角俯角问题.

2.小红将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°时,感觉最舒适(如图1),侧面示意图为图2;使用时为了散热,她在底板下面垫入散热架ACO'后,电脑转到AO'B'位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O'C⊥OA于点C,O'C=12cm. (1)求∠CAO'的度数.

(2)显示屏的顶部B'比原来升高了多少?

(3)如图4,垫入散热架后,要使显示屏O'B'与水平线的夹角仍保持120°,则显示屏O'B'应绕点O'按顺时针方向旋转多少度?

【答案】(1)∠CAO′=30°;(2)(36﹣12方向旋转30°. 【解析】

)cm;(3)显示屏O′B′应绕点O′按顺时针

试题分析:(1)通过解直角三角形即可得到结果;

(2)过点B作BD⊥AO交AO的延长线于D,通过解直角三角形求得BD=OBsin∠BOD=24×

=12

,由C、O′、B′三点共线可得结果;

(3)显示屏O′B′应绕点O′按顺时针方向旋转30°,求得∠EO′B′=∠FO′A=30°,既是显示屏O′B′应绕点O′按顺时针方向旋转30°.

试题解析:(1)∵O′C⊥OA于C,OA=OB=24cm, ∴sin∠CAO′=∴∠CAO′=30°;

(2)过点B作BD⊥AO交AO的延长线于D,∵sin∠BOD=∵∠AOB=120°,∴∠BOD=60°,∴BD=OBsin∠BOD=24×∠CAO′=30°,

∴∠AO′C=60°,∵∠AO′B′=120°,∴∠AO′B′+∠AO′C=180°, ∴O′B′+O′C﹣BD=24+12﹣12

=36﹣12

, )cm;

=12

,∴BD=OBsin∠BOD,,∵O′C⊥OA,

∴显示屏的顶部B′比原来升高了(36﹣12

(3)显示屏O′B′应绕点O′按顺时针方向旋转30°, 理由:∵显示屏O′B与水平线的夹角仍保持120°, ∴∠EO′F=120°, ∴∠FO′A=∠CAO′=30°, ∵∠AO′B′=120°, ∴∠EO′B′=∠FO′A=30°,

∴显示屏O′B′应绕点O′按顺时针方向旋转30°.

考点:解直角三角形的应用;旋转的性质.

3.在矩形ABCD中,AD>AB,点P是CD边上的任意一点(不含C,D两端点),过点P作PF∥BC,交对角线BD于点F.

(1)如图1,将△PDF沿对角线BD翻折得到△QDF,QF交AD于点E.求证:△DEF是等腰三角形;

(2)如图2,将△PDF绕点D逆时针方向旋转得到△P'DF',连接P'C,F'B.设旋转角为α(0°<α<180°).

①若0°<α<∠BDC,即DF'在∠BDC的内部时,求证:△DP'C∽△DF'B.

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4