中考数学试题分类汇编考点等腰三角形等边三角形和直角三角形含解析-

中考数学试题分类汇编考点等腰三角形等边三角形和直角三角形含

解析-

考点20 等腰三角形、等边三角形和直角三角形

一.选择题(共5小题)

1.(2018?湖州)如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是( )

A.20° B.35° C.40° D.70°

【分析】先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=(180°﹣∠CAB)=70°.再利用角平分线定义即可得出∠ACE=∠ACB=35°. 【解答】解:∵AD是△ABC的中线,AB=AC,∠CAD=20°, ∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°﹣∠CAB)=70°. ∵CE是△ABC的角平分线, ∴∠ACE=∠ACB=35°. 故选:B.

2.(2018?宿迁)若实数m、n满足等式|m﹣2|+边的边长,则△ABC的周长是( ) A.12 B.10 C.8

D.6

=0,且m、n恰好是等腰△ABC的两条

【分析】由已知等式,结合非负数的性质求m、n的值,再根据m、n分别作为等腰三角形的腰,分类求解. 【解答】解:∵|m﹣2|+∴m﹣2=0,n﹣4=0, 解得m=2,n=4,

当m=2作腰时,三边为2,2,4,不符合三边关系定理;

当n=4作腰时,三边为2,4,4,符合三边关系定理,周长为:2+4+4=10. 故选:B.

1 / 11

=0,

中考数学试题分类汇编考点等腰三角形等边三角形和直角三角形含

解析-

3.(2018?扬州)在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,则下列结论一定成立的是( )

A.BC=EC B.EC=BE C.BC=BE D.AE=EC

【分析】根据同角的余角相等可得出∠BCD=∠A,根据角平分线的定义可得出∠ACE=∠DCE,再结合∠BEC=∠A+∠ACE、∠BCE=∠BCD+∠DCE即可得出∠BEC=∠BCE,利用等角对等边即可得出BC=BE,此题得解.

【解答】解:∵∠ACB=90°,CD⊥AB, ∴∠ACD+∠BCD=90°,∠ACD+∠A=90°, ∴∠BCD=∠A. ∵CE平分∠ACD, ∴∠ACE=∠DCE.

又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE, ∴∠BEC=∠BCE, ∴BC=BE. 故选:C.

4.(2018?淄博)如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为( )

A.4 B.6 C. D.8

【分析】根据题意,可以求得∠B的度数,然后根据解直角三角形的知识可以求得NC的长,从而可以求得BC的长.

【解答】解:∵在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,

2 / 11

中考数学试题分类汇编考点等腰三角形等边三角形和直角三角形含

解析-

∴∠AMN=∠NMC=∠B,∠NCM=∠BCM=∠NMC, ∴∠ACB=2∠B,NM=NC, ∴∠B=30°, ∵AN=1, ∴MN=2, ∴AC=AN+NC=3, ∴BC=6, 故选:B.

5.(2018?黄冈)如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,CE为AB边上的中线,AD=2,CE=5,则CD=( )

A.2 B.3 C.4 D.2

【分析】根据直角三角形的性质得出AE=CE=5,进而得出DE=3,利用勾股定理解答即可. 【解答】解:∵在Rt△ABC中,∠ACB=90°,CE为AB边上的中线,CE=5, ∴AE=CE=5, ∵AD=2, ∴DE=3,

∵CD为AB边上的高, ∴在Rt△CDE中,CD=故选:C.

二.填空题(共12小题)

6.(2018?成都)等腰三角形的一个底角为50°,则它的顶角的度数为 80° . 【分析】本题给出了一个底角为50°,利用等腰三角形的性质得另一底角的大小,然后利用三角形内角和可求顶角的大小. 【解答】解:∵等腰三角形底角相等, ∴180°﹣50°×2=80°,

3 / 11

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4