生物化学王境岩第三版课后习题答案

答:由于在C-3位上有一甲基取代基,因此植烷酸不属于β- 氧化的底物,它必须在α- 羟化酶作用下,在α位发生羟基化并脱羧形成植烷酸后才能进行氧化,即植烷酸的氧化中,α -氧化是必然的。

⒍如若膳食中只有肉 、蛋和蔬菜,完全排除脂质,会不会发生脂肪酸缺欠症?

答:由于有些脂肪酸在机体内不能合成或合成的量不足,因此,若膳食中只有肉 、蛋和蔬菜,完全排除脂质,会发生脂肪酸缺欠症。

⒎患者体内发生脂质积聚,经检测,脂质中具有半乳糖-葡萄糖神经酰胺的结构。试问是哪一步酶反映不能正常运行?

答:这是由于欠缺α- 半乳糖苷酶,导致三已糖神经酰氨不能降解造成的。

⒏是说明“酮尿症”的生化机制。

答:酮体是乙酰乙酸、β羟丁酸及丙酮的总称。

酮体为人体利用脂肪氧化物产生的中间的代谢产物,正常人产生的酮体很快被利用,在血中含量极微,约为2.0-4.0mg/L其中乙酰乙酸\\β羟丁酸\\丙酮各种分加约占20%、78%、2%。尿中酮体(以丙酮计)约为50mg/24h。定性测试为阴性。但在饥饿、各种原因引起的糖代谢发生障碍,脂分解增加及糖尿病酸中毒时,因产生酮体速度大于组织利用速度,可出现酮血症,继而发生酮尿(ketonuria,KET)。

⒐说明无活性维生素D3和活性维生素D3的结构关系。

答:活性维生素D3是指25-羟基维生素D3和1,25-羟基维生素D3,它们是由维生素D3(无活性)羟基化而成的。

第29章 脂类的生物合成

⒈试解释“三羧酸运送系统(tricarboxylate transport system)的作用机制和功能。 答:合成脂肪酸的原料是乙酰CoA,主要来自糖的氧化分解。此外,某些氨基酸分解也可提供部分乙酰CoA。以上过程都是在线粒体内进行的,而合成脂肪酸的酶却存在于胞液中,因此乙酰CoA必须进入胞液才能用于合成脂肪酸。乙酰CoA不能自由通过线粒体内膜,需借助于柠檬酸-丙酮酸循环(citrate pyruvate cycle)将乙酰CoA从线粒体内运出到胞液中。

首先在线粒体内,乙酰CoA与草酰乙酸经柠檬酸合酶催化缩合生成柠檬酸,再由线粒体内膜上相应载体协助进入胞液。在胞液内存在的柠檬酸裂解酶可使柠檬酸裂解产生乙酰CoA及草酰乙酸,前者可用于合成脂肪酸,后者可返回线粒体补充合成柠檬酸时的消耗。但草酰乙酸也不能自由通透线粒体内膜,故必需先经苹果酸脱氢酶催化,还原成苹果酸再经线粒体内膜上的载体转运入线粒体,经氧化后补充草酰乙酸。也可在苹果酸酶作用下,氧化脱羧生成丙酮酸,同时伴有NADPH的生成。丙酮酸可经内膜载体被转运入线粒体内,此时丙酮酸可再羧化转变为草酰乙酸。每经柠檬酸-丙酮酸循环一次,可使一分子乙酰CoA由线粒体进入胞液,同时消耗两分子ATP,还为机体提供了NADPH以补充合成反应的需要。 乙酰CoA需先羧化生成丙二酰CoA后才能进入合成脂肪酸的途径。乙酰CoA羧化酶是脂肪酸合成过程中的限速酶。此酶是变构酶。其无活性的单体与有活性的多聚体之间可以互变。柠檬酸与异柠檬酸可促进单体聚合成多聚体,增强酶活性,而长链脂肪酸可加速解聚,从而抑制该酶活性。乙酰CoA羧化酶还可依赖于cAMP的磷酸化及去磷酸化修饰来调节酶

活性。此酶经磷酸化后活性丧失。如胰高血糖素及肾上腺素等能促进这种磷酸化作用。从而抑制脂肪酸的合成;而胰岛素则能促进酶的去磷酸化作用,故可增强乙酰CoA羧化酶活性,加速脂肪酸合成。

⒉说明真核生物体内脂肪酸合酶的结构与功能。

答:真核生物体内脂肪酸合酶是多肽紧密协同的一个整体,共同作用完成脂酰CoA和丙二酸单酰CoA合成脂肪酸的催化过程,多肽链包括一个ACP和七个酶。 ACP的作用:以硫酯键的形式把脂酰基连接在复合物上。 七个酶及其作用分别是:

(1)乙酰 CoA:ACP 转酰酶(AT)(催化脂酰基转移)

(2)丙二酸单酰CoA:ACP 转酰酶(MT)(催化丙二酰基转移) (3)β-酮酰-ACP 合酶(KS)(催化脂酰基与丙二酰基缩合) (4)β-酮酰-ACP还原酶(KR)(催化酮基还原为羟基) (5)β-羟酰-ACP 脱水酶(HD)(催化脱水) (6) 烯酰-ACP 还原酶(ER)(催化双键还原) (7) 脂酰-ACP硫酯酶 (催化释放脂肪酸)

⒊试比较脂肪酸合成与脂肪酸β-氧化的异同。

答:脂肪酸合成与脂肪酸β-氧化的差异主要表现在以下几个方面 (1)细胞定位不同:胞质中;线粒体 (2)酰基载体不同:ACP;COA

(3)发生的反应不同:缩合、还原、脱水、再还原;脱氢、水化、再脱氢、硫解 (4)参与酶类不同:2种酶系;5种

(5)辅因子不同:NADPH;FAD,NAD+ (6)ATP不同:耗7ATP;生成130ATP (7)方向不同:甲基端向羧基端;相反

⒋脂肪酸合成中的碳链延长在线粒体中和在内质网中的机制有何不同?

答:生物体内有两种不同的酶系可以催化碳链的延长,一是线粒体中的延长酶系,另一个是粗糙内质网中的延长酶系。

线粒体脂肪酸延长酶系:以乙酰CoA为C2供体,不需要酰基载体,由软脂酰CoA与乙酰CoA直接缩合。线粒体的基质中进行,只能在C12,C14,C16的基础上逐步添加C2物,生成长链脂肪酸。需acetyl CoA, NADH, NADPH。反应为?β-氧化的逆过程,只有个别反应不同,即脂酰CoA 脱氢酶不参与逆反应,合成时由烯脂酰CoA还原酶催化,需NADPH而不是FADH2。

内质网脂肪酸延长酶系:用丙二酸单酰CoA作为C2的供体,NADPH作为H的供体,中间过程和脂肪酸合成酶系的催化过程相同。

⒌乙酰-CoA羧化酶脂肪酸合成中起着调控作用,试述这个调控的机制。

答:乙酰CoA需先羧化生成丙二酰CoA后才能进入合成脂肪酸的途径。乙酰CoA羧化酶是脂肪酸合成过程中的限速酶,是脂肪酸合成调控的关键所在。

乙酰CoA羧化酶是变构酶。其无活性的单体与有活性的多聚体之间可以互变。柠檬酸与异柠檬酸可促进单体聚合成多聚体,增强酶活性,而长链脂肪酸可加速解聚,从而抑制该酶活性。乙酰CoA羧化酶还可依赖于cAMP的磷酸化及去磷酸化修饰来调节酶活性。此酶经磷

酸化后活性丧失。如胰高血糖素及肾上腺素等能促进这种磷酸化作用,从而抑制脂肪酸的合成;而胰岛素则能促进酶的去磷酸化作用,故可增强乙酰CoA羧化酶活性,加速脂肪酸合成。

⒍磷脂的特征是在C2位上有一不饱和脂肪酸。举一磷脂实例。它在C2位上是饱和脂肪酸,这样的结构是怎样合成的?

答:二软脂酰磷脂在C2位上有一不饱和脂肪酸。这样的结构是通过在磷脂酰胆碱的sn1和sn2上发生脂肪酸取代反应形成的。

⒎试述以CDP二脂酰甘油为起始物,3种甘油磷脂(磷脂酰乙醇胺、磷脂酰甘油、二磷脂酰甘油)的生物合成路线。

答:CDP -二脂酰甘油在磷脂酰苷油磷酸合酶催化下,生成磷脂酰丝氨酸,磷脂酰丝氨酸在磷脂酰丝氨酸脱羧酶催化下,脱羧生成磷脂酰乙醇胺;

CDP -二脂酰甘油在磷脂酰丝氨酸合酶催化下,生成磷脂酰苷油酸,磷脂酰苷油酸在磷脂酰苷油酸磷酸酶催化下,生成磷脂酰苷油;

磷脂酰苷油在二磷脂酰苷油合酶催化下,生成二磷脂酰苷油。

⒏\血小板活化因子(platelet activating factor,PAF)\为何物?用二羟丙酮磷酸为原料如何实现它?

答:血小板活化因子是1- 烷基 – 2 - 乙酰基 – 苷油磷酸胆碱。

血小板活化因子的合成过程与上述磷脂合成过程类似,二羟丙酮磷酸在酰基转移酶催化下,转变生成脂酰磷酸二羟丙酮以后,由一分子长链脂肪醇取代其第一位脂酰基,其后再经还原(由NADPH供H)、转酰基等步骤合成磷脂酸的衍生物。此产物替代磷脂酸为起始物,沿甘油三酯途径合成胆碱或乙醇胺缩醛磷脂。血小板活化因子与缩醛磷脂的不同在于长链脂肪醇是饱和长链醇,第2位的脂酰基为最简单的乙酰基。

⒐试述以软脂酰-CoA和丝氨酸为起始物,鞘磷脂和葡糖-神经下酰胺的生物合成路线。 答:P277 图 29-30 。

⒑低剂量的阿司匹林(如隔日一粒)有防止心脏病突发的功能。如每日服用3-4粒,为什么反而事得其反?(揭示:TXA2生成于血小板中,PGI2生成于动脉壁上)

答:由于阿司匹林能抑制环加氧酶的活性,进而减少血栓烷如TXA2等的生成,从而可防止心脏病的突发。同时,大剂量的阿司匹林可降低动脉6一酮一前列腺素F的水平,使血管血流量增大,增加心脏的负担,因此有可能导致心脏病的突发。

⒒培养肝细胞时加入2-[14C]醋酸。14C标记在HMG-CoA什么位置上? 答:14C标记在HMG-CoA中异戊二烯单元的C2和C4的位置上。

⒓试述Wolman's病的症候和病因。将患者的皮肤的成纤维细胞进行培养,HMG-CoA的活性变高,还是变低?在培养基中LDL-受体的数量是减?

答:Wolman's病的特征是在不同组织中胆固醇酯和三脂酰苷油的积聚。其病因是溶酶体中酸性脂肪酶的完全缺乏。

将患者的皮肤的成纤维细胞进行培养,HMG-CoA的活性变高。在培养基中LDL-受体的数量是减少的。

⒔乙酰-CoA如何转化为甲羟戊酸?试述甲羟戊酸转化为(角)鲨烯的立体化学问题。 答:乙酰-CoA在硫解酶的反向催化下形成乙酰乙酰-CoA,乙酰乙酰-CoA和乙酰-CoA在HNG-CoA合酶催化下生成3-羟-3-甲基戊二酰-CoA,3-羟-3-甲基戊二酰-CoA在3-羟-3-甲基戊二酰-CoA还原酶催化下,生成甲羟戊酸。

甲羟戊酸转化为(角)鲨烯的过程中,有14步反应涉及到立本化学问题,从理论上讲,自甲羟戊酸到(角)鲨烯,有16384种异构件出现的可能性,但在生物体内实际上只有一种途径在出现,这是由于在反应中通过顺式消除、反式消除以及异构化反应中消除等方式解决了这些立体化问题。

⒕试综述低密度脂蛋白(LDL)的大体组成,体内的运送和生物功能。

答:低密度脂蛋白(LDL)由蛋白质、三脂酰苷油、胆固醇、胆固醇酯、磷脂类以及载脂蛋白等组成,密度在1.019-1.063克/毫升之间。

在动物体内,低密度脂蛋白可随血浆转移到肝脏、肾上腺和脂肪组织。其主要功能是把胆固醇从肝脏运送到全身组织。

第30章 蛋白质降解和氨基酸的分解代谢

⒈动物体内有哪些主要的酶参加蛋白质水解反应?总结这些酶的作用特点。

答:动物体内参加蛋白质水解的酶有胃蛋白酶、胰蛋白酶、糜蛋白酶、弹性蛋白酶、羧肽酶及氨肽酶等。

胃蛋白酶催化具有苯丙氨酸、酪氨酸、色氨酸、亮氨酸、谷氨酸、谷氨酰胺等肽键的断裂;胰蛋白酶水解由赖氨酸、精氨酸的羧基形成的肽键;糜蛋白酶水解含有苯丙氨酸、酪氨酸、色氨酸等残基羧基形成的肽键;羧肽酶和氨肽酶则分别从肽段的C端和N端水解下氨基酸残基。

⒉氨基酸脱氨基后的碳链如何进入柠檬酸循环?

答:氨基酸脱氨基后的碳链分别经形成乙酰-CoA的途径、α- 酮戊二酸的途径、琥珀酰 – CoA的途径、延胡索酸途径及草酰乙酸途径进入柠檬酸循环。

⒊有一种遗传病人,在血浆中异戊酸的含量增高,可能影响了哪种氨基酸的代谢?如果这种氨基酸及其酮酸在血液中含量是正常的,可能缺乏哪一种酶?

答:① 亮氨酸;②异亮氨酰脱氢酶。

⒋写出苯丙氨酸在排氨动物和排尿苏动物体内完全氧化的平衡式,包括全部活化和能量储存步骤。

答:苯丙氨酸+10O2+46ADP+46Pi?→9CO2+NH2+45ATP+AMP+PPI+45H2O

⒌组氨酸分解代谢时,下面标出的原子会出现在谷氨酸的什么位置上?

答:1为氨基氮,5为а–碳原子,6为β–碳原子,8为γ–羧基碳原子,2,3原子不参加谷氨酸。

⒍写出丙氨酸转变为乙酰乙酸和尿素的总平衡式: 答:2丙氨酸+4NAD++3ATP+4H2O?

→乙酰乙酸+尿素

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4