»ªÄÏʦ·¶´óѧ¼ÆËã»úѧԺ¡¶ÀëÉ¢ÊýѧI¡·Ä£Ä⿼ÊÔ(´ø´ð°¸)¹ØÓÚ

»ªÄÏʦ·¶´óѧ ¼ÆËã»úѧԺ 2009 £­2010 ѧÄêµÚ2ѧÆÚÆÚÄ©¿¼ÊÔ

¡¶ ÀëÉ¢ÊýѧI ¡·¿Î³ÌÊÔ¾í£¨A¾í£©

²Î¿¼´ð°¸¼°ÆÀ·Ö±ê×¼

Ò»£®µ¥Ñ¡Ìâ(±¾Ìâ×Ü·Ö20·Ö£¬Ã¿Ð¡Ìâ2·Ö) 1£®ÒÔÏÂÓï¾äÊÇÃüÌâµÄÊÇ( D )¡£ A£®Äãϲ»¶³ª¸èÂð£¿

2£®A={a,b}£¬B={c,d}£¬AºÍBµÄµÑ¿¨¶û»ýA¡ÁBÊÇ( C )¡£ A£® {, } B£®{} C£®{, , , }

3£®ÉèA={a,{a}}£¬ÏÂÁÐÃüÌâ´íÎóµÄÊÇ( B )¡£

A£®{a}?P(A) B£®{a}?P(A) C£®{{a}}?P(A) D£®{{a}}?P(A)

4£®ÉèA={1, 2, 3, 4}£¬ÏÂÁÐ( D )²»ÊÇAµÄ»®·Ö¡£ A£®{{1}, {2}, {3}, {4}}

5£®ÏÂÁÐʽ×Ó( D )²»ÕýÈ·¡£ A£®??{?}

6£®¼ÙÉèÂÛÓòÊÇÕûÊý¼¯ºÏ£¬ÏÂÁÐ×ÔÈ»ÓïÑԵķûºÅ»¯±íʾÖУ¬( C )µÄÖµÊǼٵġ£ A£®?x?yG(x,y)£¬ÆäÖÐG(x,y)±íʾxy=x B£®?y?xH(x,y)£¬ÆäÖÐH(x,y)±íʾxy=x C£®?y?xF(x,y)£¬ÆäÖÐF(x,y)±íʾx+y=10 D£®?x?yM(x,y)£¬ÆäÖÐM(x,y)±íʾx+y=10

B£®{?}?{{?}} C£®??{?} D£®{?}?{{?}}

B£®{{1, 2}, {3}, {4}}

D£®{?, {1, 2, 3}, {4}}

C£®{{1, 2}, {3, 4}}

D£®{, }

B£®x+y=20

C£®¸øÎÒÒ»±­Ë®°É£¡ D£®Èô7+8?18£¬ÔòÈý½ÇÐÎÓÐ4Ìõ±ß¡£

1 / 4

7£®ÒÔÏÂÁª½á´ÊµÄ¼¯ºÏ( D )²»ÊÇÍ걸¼¯¡£ A£®{?, ?, ?, ?, ?} B£®{?, ?, ?}

8£®ÏÂÃæÄĸöν´Ê¹«Ê½ÊÇÇ°Êø·¶Ê½( C )¡£ A£®??x(A(x)?B(x))

9£®ÒÔÏÂʽ×Ó´íÎóµÄÊÇ( D )¡£

A£®?x?A(x)???xA(x) B£®?x(A(x)?B(x)) ? ?xA(x) ??x B(x) C£®?x(A(x)?B(x)) ? ?xA(x)??x B(x) D£®?x(A(x)?B(x)) ? ?xA(x)??x B(x)

10£®ÒÔÏÂÃüÌ⹫ʽÊÇÖØÑÔʽµÄÊÇ( D )¡£ A£®?q?(p?q)

¶þ£®Ìî¿ÕÌâ(±¾Ìâ×Ü·Ö30·Ö£¬Ã¿¿Õ2·Ö)

1£®ÊµÊý¼¯Éϵĺ¯Êýf(x)=2x2+1£¬g(x)= -3x+10£¬g-1(x)=( (10-x)/3 )£¬ fog(x)= ( -6x2+7 )¡£ 2£®Î½´Ê¹«Ê½?x(P(x)? ?yR(y))? Q(x)ÖÐÁ¿´Ê?xµÄϽÓòÊÇ(P(x)??yR(y))¡£

3£®ÈôA={a,b}£¬ÔòA¡ÁP(A)=({, , , , , , , })¡£

4£®Éèp£ºÎÒÉú²¡£¬q£ºÎÒȥѧУ£¬Ôò¾ä×Ó¡°Ö»ÓÐÔÚÉú²¡Ê±£¬ÎҲŲ»È¥Ñ§Ð£¡±·ûºÅ»¯Îª¹«Ê½ (?q?p)¡£

5£®¼¯ºÏA={a,b,c,d}£¬AÉϵÄÒ»¸ö»®·Ö¦Ð={{a, b},{c, d}}£¬Óë¦Ð¶ÔÓ¦µÄAÖ®Éϵĵȼ۹ØÏµÊÇ({, , , }?IA)¡£

6£®ÉèS={1,2,3,4}£¬AÉϵĹØÏµR£½{<1,2>£¬<2,1>£¬<2,3>£¬<3,4>}£¬ÔòR?R=({<1,1>£¬<1,3>£¬<2,2>£¬<2,4>})£¬R-1 ={<2,1>£¬<1,2>£¬<3,2>£¬<4,3>}¡£ 7£®¼¯ºÏAÉϵĵȼ۹ØÏµµÄÈý¸öÐÔÖÊÊÇ (×Ô·´ÐÔ¡¢¶Ô³ÆÐԺʹ«µÝÐÔ)¡£

8£®¹«Ê½?x((A(x)?B(y£¬x))??z C(y£¬z))?D(x)ÖУ¬×ÔÓɱäÔªÊÇ(x, y)£¬Ô¼Êø±äÔªÊÇ(x, z)¡£ 9£®A={1,2,3,4}£¬B={3,4,5}£¬È«¼¯E={0,1,2,3,4,5,6,7}£¬ ?A?(A?B)=({0,3,4,5,6,7})£¬ ?( B - A)= ({0,1,2,3,4,6,7})¡£

10£® A={a,b,c,d}£¬ AÖ®ÉϵĹØÏµR={, , , }£¬ t(R)=( {, , , , , , })¡£

11£®A={a,b,c,d}, ÒÔϹþ˹ͼËù¶ÔÓ¦µÄÆ«Ðò¹ØÏµR=({, , , }?IA)¡£

2 / 4

C£®{?, ?} D£®{?, ?}

B£®?xA(x)? ??xB(x)

D£®?x??x (A(x)? ?B(x))

C£®?x?x (A(x)? ?B(x))

B£®((p?q)?q

D£®((p?q)??q)??p

C£®((p?q)?q)?p

a

c

d b

Èý£®¼ÆËã/¼ò´ðÌâ(±¾Ìâ×Ü·Ö20·Ö£¬Ã¿Ð¡Ìâ10·Ö)

1£®(10·Ö)ÓõÈÖµÑÝËã·¨Çó¹«Ê½(p?q)?rµÄÖ÷ºÏÈ¡·¶Ê½ºÍÖ÷ÎöÈ¡·¶Ê½¡£ ½â£º

Ö÷ÎöÈ¡·¶Ê½ (p?q)?r ?(p?q?(r??r))?((p??p)? (q??q)?r) ?(p?q?r)?(p?q??r))? (p?q?r)? (p??q?r) ? (?p?q?r) ? (?p??q?r) ?(p?q?r)?(p?q??r))?(p??q?r)?(?p?q?r) ? (?p??q?r) ÆÀ·Ö±ê×¼£ºÖ÷ºÏÈ¡·¶Ê½ºÍÖ÷ÎöÈ¡·¶Ê½¸÷5·Ö

2£®(10·Ö) Çó¹«Ê½µÄÇ°Êø·¶Ê½£º(?x1F(x1, x2)??x2G(x2))??x2H(x1, x2) ½â£º (?x1F(x1, x2)??x2G(x2))??x2H(x1, x2)

? (?x1F(x1, x2)??x3G(x3))??x4H(x5, x4) ? ?x1?x3(F(x1, x2)?G(x3))??x4H(x5, x4) ? ?x1?x3?x4((F(x1, x2)?G(x3))?H(x5, x4)) ÆÀ·Ö±ê×¼£ºÀÏʦ¸ù¾Ý¹ý³Ì¸ø·Ö

ËÄ£®Ö¤Ã÷Ìâ(±¾Ìâ×Ü·Ö30·Ö£¬Ã¿Ð¡Ìâ10·Ö)

1£®(10·Ö) ÔÚ×ÔÈ»ÍÆÀíϵͳNÖй¹ÔìÏÂÃæÍÆÀíµÄÖ¤Ã÷(¸öÌåÓòΪÈ˵ļ¯ºÏ)¡£

ÿ¸ö¿ÆÑ§¹¤×÷Õß¶¼Êǿ̿à×êÑеģ¬Ã¿¸ö¿Ì¿à×êÑжøÓÖ´ÏÃ÷µÄÈËÔÚËûµÄÊÂÒµÖн«»ñµÃ³É¹¦¡£ÕÅÈýÊÇ¿ÆÑ§¹¤×÷Õߣ¬²¢ÇÒËûÊÇ´ÏÃ÷µÄ£¬ËùÒÔÕÅÈýÔÚËûµÄÊÂÒµÖн«»ñµÃ³É¹¦¡£

ÉèF(x): xÊÇ¿ÆÑ§¹¤×÷Õߣ¬G(x): xÊǿ̿à×êÑеģ¬H(x): xÊÇ´ÏÃ÷µÄ£¬I(x): xÔÚÊÂÒµÖн«»ñµÃ³É¹¦¡£

ǰÌ᣺?x(F(x) ?G(x)), ?x(G(x) ?H(x) ?I(x)), a: ÕÅÈý, F(a), H(a) ½áÂÛ£ºI(a)

3 / 4

Ö÷ºÏÈ¡·¶Ê½ (p?q)?r ?(p?r) ?(q?r) ?(p?( q??q)?r)?(( p??p)?q?r) ?(p?q?r) ?(p??q?r)?( p?q?r)?(?p?q?r) ?(p?q?r) ?(p??q?r)?(?p?q?r)

ÁªÏµ¿Í·þ£º779662525#qq.com(#Ìæ»»Îª@) ËÕICP±¸20003344ºÅ-4