教学重特殊三角形解题方法 点 教学难特殊三角形解题方法 点 三角形的初步认识 知识要点: 1.1认识三角形 ①由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。“三角形” 用符号“△”表示,顶点是ABC的三角形记做“△ABC”读作“三角形ABC”。 由两点之间线段最短,可以得到如下性质:三角形任何两边的和大于第三 边。 ②三角形三个内角的和等于180°。 三角形按角进行分类:(注意要着重搞清各类三角形的特征。) 锐角三角形——三个角都是锐角。 三角形 直角三角形——有一个角是直角。(记作Rt△ABC) 钝角三角形——有一个角是钝角。 由三角形一条边的延长线和另一条相邻的边组成的角,叫做该三角形的外角。 三角形的一个外角等于和它不相邻两个内角的和。 三角形的一个外角大于任何一个和它不相邻的内角。 第1页/共19页
1.2三角形的平分线和中线 在三角形中,一个内角的角平分线与它对边相交,这个角的顶点与交点之间的线段叫做三角形的三角形的平分线。 在三角形中,连结一个顶点与它对边中点的线段,叫做这个三角形的中线。 1.3三角形的高 从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高。 锐角三角形的三条高在三角形的内部,垂足在相应顶点的对边上。直角三角形的直角边上的高分别与另一条直角边重合,垂足都是直角的顶点。而在钝角三角形中,夹钝角两边上的高都在三角形的外部,它们的垂足都在相应顶点的对边的延长线上。 1.4全等三角形 能够重合的两个三角形称为全等三角形。 两个全等三角形重合时,能互相重合的顶点叫做全等三角形的对应顶点,互相重合的边叫做全等三角形的对应边,互相重合的角叫做全等三角形的对应角。 “全等”可用符号“≌”来表示。 全等三角形的性质:全等三角形对应边相等,对应角相等。 1.5三角形全等的条件 ①三边对应相等的两个三角形全等(简写成“边边边”或“SSS”)。 当三角形三边长确定是,三角形的形状、大小完全被确定,这个性质叫做三角形的稳定性,这是三角形特有的性质。 第2页/共19页
②有一个角和夹这个角的两边对应相等的两个三角形全等(简写成“边角边”或“SAS”)。 垂直于一条线段,并且平分这条线段的直线叫做这条线段的垂直平分线,简称中垂线。 线段垂直平分线上的点到线段两端点的距离相等。 ③有两个角和这两个角的夹边对应相等的两个三角形全等(简写成“角边角”或“ASA”)。 有两个角和其中一个角的对边对应相等的两个三角形全等(简写成“角角边”或“AAS”)。 角平分线上的一点到角两边的距离相等。 1.6作三角形:在几何作图中,我们把用没有刻度的直尺和圆规作图,简称尺规作图。 特殊三角形 知识归纳 1. 等腰三角形:两条边相等的三角形叫做等腰三角形。相等的两边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。 2. 等腰三角形的“三线合一”性——顶角平分线;底边中线;底边高 【注意】等腰三角线的对称轴是“三线”所在的直线,也是底边的中垂线 3. 等腰三角形的画法 (1)任作一线段为等腰三角形的底; 第3页/共19页