¡ì07. Ö±ÏߺÍÔ²µÄ·½³Ì ֪ʶҪµã
Ò»¡¢Ö±Ïß·½³Ì.
1. Ö±ÏßµÄÇãб½Ç£ºÒ»ÌõÖ±ÏßÏòÉϵķ½ÏòÓëxÖáÕý·½ÏòËù³ÉµÄ×îСÕý½Ç½Ð×öÕâÌõÖ±ÏßµÄÇãб½Ç£¬ÆäÖÐÖ±ÏßÓëxÖáÆ½ÐлòÖØºÏʱ£¬ÆäÇãб½ÇΪ0£¬¹ÊÖ±ÏßÇãб½ÇµÄ·¶Î§ÊÇ0????180?(0????).
×¢£º¢Ùµ±??90?»òx2?x1ʱ£¬Ö±Ïßl´¹Ö±ÓÚxÖᣬËüµÄбÂʲ»´æÔÚ.
¢ÚÿһÌõÖ±Ïß¶¼´æÔÚΩһµÄÇãб½Ç£¬³ýÓëxÖá´¹Ö±µÄÖ±Ïß²»´æÔÚбÂÊÍ⣬ÆäÓàÿһÌõÖ±Ïß¶¼ÓÐΩһµÄбÂÊ£¬²¢ÇÒµ±Ö±ÏßµÄбÂÊÒ»¶¨Ê±£¬ÆäÇãб½ÇÒ²¶ÔӦȷ¶¨. 2. Ö±Ïß·½³ÌµÄ¼¸ÖÖÐÎʽ£ºµãбʽ¡¢½Ø¾àʽ¡¢Á½µãʽ¡¢Ð±ÇÐʽ.
ÌØ±ðµØ£¬µ±Ö±Ïß¾¹ýÁ½µã(a,0),(0,b)£¬¼´Ö±ÏßÔÚxÖᣬyÖáÉϵĽؾà·Ö±ðΪ
a,b(a?0,b?0)ʱ£¬Ö±Ïß·½³ÌÊÇ£º
xy??1. ab23×¢£ºÈôy??x?2ÊÇÒ»Ö±Ïߵķ½³Ì£¬ÔòÕâÌõÖ±Ïߵķ½³ÌÊÇy??x?2£¬µ«Èô
y??2x?2(x?0)Ôò²»ÊÇÕâÌõÏß. 323¸½£ºÖ±Ïßϵ£º¶ÔÓÚÖ±ÏßµÄб½ØÊ½·½³Ìy?kx?b£¬µ±k,b¾ùΪȷ¶¨µÄÊýֵʱ£¬Ëü±íʾһÌõÈ·¶¨µÄÖ±Ïߣ¬Èç¹ûk,b±ä»¯Ê±£¬¶ÔÓ¦µÄÖ±ÏßÒ²»á±ä»¯.¢Ùµ±bΪ¶¨Ö²£¬k±ä»¯Ê±£¬ËüÃDZíʾ¹ý¶¨µã£¨0£¬b£©µÄÖ±ÏßÊø.¢Úµ±kΪ¶¨Öµ£¬b±ä»¯Ê±£¬ËüÃDZíʾһ×鯽ÐÐÖ±Ïß.
3. ¢ÅÁ½ÌõÖ±Ï߯½ÐУº
¢Ùl1ºÍl2ÊÇÁ½Ìõ²»ÖغϵÄÖ±Ïß. ¢ÚÔÚl1ºÍl2l1¡Îl2?k1?k2Á½ÌõÖ±Ï߯½ÐеÄÌõ¼þÊÇ£º
µÄбÂʶ¼´æÔÚµÄǰÌáϵõ½µÄ. Òò´Ë£¬Ó¦Ìرð×¢Ò⣬³éµô»òºöÊÓÆäÖÐÈÎÒ»¸ö¡°Ç°Ìᡱ¶¼»áµ¼Ö½áÂ۵ĴíÎó.
£¨Ò»°ãµÄ½áÂÛÊÇ£º¶ÔÓÚÁ½ÌõÖ±Ïßl1,l2£¬ËüÃÇÔÚyÖáÉϵÄ×ݽؾàÊÇb1,b2£¬Ôò
l1¡Îl2?k1?k2£¬ÇÒb1?b2»òl1,l2µÄбÂʾù²»´æÔÚ£¬¼´A1B2?B1A2ÊÇÆ½ÐеıØÒª²»³ä
·ÖÌõ¼þ£¬ÇÒC1?C2£©
ÍÆÂÛ£ºÈç¹ûÁ½ÌõÖ±Ïßl1,l2µÄÇãб½ÇΪ?1,?2Ôòl1¡Îl2??1??2.
¢ÆÁ½ÌõÖ±Ïß´¹Ö±£º
Á½ÌõÖ±Ïß´¹Ö±µÄÌõ¼þ£º¢ÙÉèÁ½ÌõÖ±Ïßl1ºÍl2µÄбÂÊ·Ö±ðΪk1ºÍk2£¬ÔòÓÐ
l1?l2?k1k2??1ÕâÀïµÄǰÌáÊÇl1,l2µÄбÂʶ¼´æÔÚ. ¢Úl1?l2?k1?0£¬ÇÒl2µÄбÂʲ»´æ
ÔÚ»òk2?0£¬ÇÒl1µÄбÂʲ»´æÔÚ. £¨¼´A1B2?A2B1?0ÊÇ´¹Ö±µÄ³äÒªÌõ¼þ£© 4. Ö±ÏߵĽ»½Ç£º
¢ÅÖ±Ïßl1µ½l2µÄ½Ç£¨·½Ïò½Ç£©£»Ö±Ïßl1µ½l2µÄ½Ç£¬ÊÇÖ¸Ö±Ïßl1ÈÆ½»µãÒÀÄæÊ±Õë·½ÏòÐýתµ½Óël2ÖØºÏʱËùת¶¯µÄ½Ç?£¬ËüµÄ·¶Î§ÊÇ(0,?)£¬µ±??90?ʱtan??k2?k1. 1?k1k2¢ÆÁ½ÌõÏֱཻÏßl1Óël2µÄ¼Ð½Ç£ºÁ½ÌõÏֱཻÏßl1Óël2µÄ¼Ð½Ç£¬ÊÇÖ¸ÓÉl1Óël2Ïཻ
???Ëù³ÉµÄËĸö½ÇÖÐ×îСµÄÕý½Ç?£¬ÓÖ³ÆÎªl1ºÍl2Ëù³ÉµÄ½Ç£¬ËüµÄȡֵ·¶Î§ÊÇ??0,?£¬
?2?µ±??90?£¬ÔòÓÐtan??k2?k11?k1k2.
5. ¹ýÁ½Ö±Ïß
?l1:A1x?B1y?C1?0??l2:A2x?B2y?C2?0µÄ½»µãµÄÖ±Ïßϵ·½³Ì
A1x?B1y?C1??(A2x?B2y?C2)?0(?Ϊ²ÎÊý£¬A2x?B2y?C2?0²»°üÀ¨ÔÚÄÚ£©
6. µãµ½Ö±ÏߵľàÀ룺
¢Åµãµ½Ö±ÏߵľàÀ빫ʽ£ºÉèµãP(x0,y0)£¬Ö±Ïßl:Ax?By?C?0,Pµ½lµÄ¾àÀëΪd£¬ÔòÓÐd?×¢£º
1. Á½µãP1(x1,y1)¡¢P2(x2,y2)µÄ¾àÀ빫ʽ£º|P1P2|?(x2?x1)2?(y2?y1)2. ÌØÀý£ºµãP(x,y)µ½ÔµãOµÄ¾àÀ룺|OP|?x2?y2 2. ¶¨±È·Öµã×ø±ê·Öʽ¡£ÈôµãP(x,y)·ÖÓÐÏòÏß¶ÎPP,ÆäÖÐ12Ëù³ÉµÄ±ÈΪ?¼´PP1??PP2P1(x1,y1),P2(x2,y2).Ôò x?x1??x2y??y2 ,y?11??1??uuuruuurAx0?By0?CA?B22.
ÌØÀý£¬Öеã×ø±ê¹«Ê½£»ÖØÒª½áÂÛ£¬Èý½ÇÐÎÖØÐÄ×ø±ê¹«Ê½¡£
3. Ö±ÏßµÄÇãб½Ç£¨0¡ã¡Ü?£¼180¡ã£©¡¢Ð±ÂÊ:k?tan? 4. ¹ýÁ½µãP1(x1,y1),P2(x2,y2)µÄÖ±ÏßµÄбÂʹ«Ê½£ºk?y2?y1.
x2?x1(x1?x2)
µ±x1?x2,y1?y2£¨¼´Ö±ÏߺÍxÖá´¹Ö±£©Ê±£¬Ö±ÏßµÄÇãб½Ç?£½90?£¬Ã»ÓÐбÂÊ Íõг¨
¢ÆÁ½ÌõƽÐÐÏß¼äµÄ¾àÀ빫ʽ£ºÉèÁ½ÌõƽÐÐÖ±Ïß
l1:Ax?By?C1?0,l2:Ax?By?C2?0(C1?C2)£¬ËüÃÇÖ®¼äµÄ¾àÀëΪd£¬ÔòÓÐd?C1?C2A?B22.
×¢£»Ö±Ïßϵ·½³Ì
1. ÓëÖ±ÏߣºAx+By+C= 0ƽÐеÄÖ±Ïßϵ·½³ÌÊÇ£ºAx+By+m=0.( m?R, C¡Ùm). 2. ÓëÖ±ÏߣºAx+By+C= 0´¹Ö±µÄÖ±Ïßϵ·½³ÌÊÇ£ºBx-Ay+m=0.( m?R) 3. ¹ý¶¨µã£¨x1,y1£©µÄÖ±Ïßϵ·½³ÌÊÇ£º A(x-x1)+B(y-y1)=0 (A,B²»È«Îª0) 4. ¹ýÖ±Ïßl1¡¢l2½»µãµÄÖ±Ïßϵ·½³Ì£º£¨A1x+B1y+C1£©+¦Ë( A2x+B2y+C2£©=0 (¦Ë?R£© ×¢£º¸ÃÖ±Ïßϵ²»º¬l2.
7. ¹ØÓÚµã¶Ô³ÆºÍ¹ØÓÚijֱÏ߶Գƣº
¢Å¹ØÓÚµã¶Ô³ÆµÄÁ½ÌõÖ±ÏßÒ»¶¨ÊÇÆ½ÐÐÖ±Ïߣ¬ÇÒÕâ¸öµãµ½Á½Ö±ÏߵľàÀëÏàµÈ. ¢Æ¹ØÓÚijֱÏ߶ԳƵÄÁ½ÌõÖ±ÏßÐÔÖÊ£ºÈôÁ½ÌõÖ±Ï߯½ÐУ¬Ôò¶Ô³ÆÖ±ÏßҲƽÐУ¬ÇÒÁ½Ö±Ïßµ½¶Ô³ÆÖ±Ïß¾àÀëÏàµÈ.
ÈôÁ½ÌõÖ±Ïß²»Æ½ÐУ¬Ôò¶Ô³ÆÖ±Ï߱عýÁ½ÌõÖ±ÏߵĽ»µã£¬ÇÒ¶Ô³ÆÖ±ÏßΪÁ½Ö±Ïß¼Ð½ÇµÄ½ÇÆ½·ÖÏß.
¢Çµã¹ØÓÚijһÌõÖ±Ï߶Գƣ¬ÓÃÖеã±íʾÁ½¶Ô³Æµã£¬ÔòÖеãÔÚ¶Ô³ÆÖ±ÏßÉÏ£¨·½³Ì¢Ù£©£¬¹ýÁ½¶Ô³ÆµãµÄÖ±Ïß·½³ÌÓë¶Ô³ÆÖ±Ïß·½³Ì´¹Ö±£¨·½³Ì¢Ú£©¢Ù¢Ú¿É½âµÃËùÇó¶Ô³Æµã. ×¢£º¢ÙÇúÏß¡¢Ö±Ïß¹ØÓÚÒ»Ö±Ïߣ¨y??x?b£©¶Ô³ÆµÄ½â·¨£ºy»»x£¬x»»y. Àý£ºÇúÏßf(x ,y)=0¹ØÓÚÖ±Ïßy=x¨C2¶Ô³ÆÇúÏß·½³ÌÊÇf(y+2 ,x ¨C2)=0. ¢ÚÇúÏßC: f(x ,y)=0¹ØÓÚµã(a ,b)µÄ¶Ô³ÆÇúÏß·½³ÌÊÇf(a ¨C x, 2b ¨C y)=0. ¶þ¡¢Ô²µÄ·½³Ì.
1. ¢ÅÇúÏßÓë·½³Ì£ºÔÚÖ±½Ç×ø±êϵÖУ¬Èç¹ûijÇúÏßCÉ쵀 ÓëÒ»¸ö¶þÔª·½³Ì