新建
上传
首页
助手
最?/div>
资料?/div>
工具

?/p>

2015

?/p>

ITU

发布白皮书?/p>

IMT

愿景?/p>

2020

年及之后

IMT

未来发展的框架和总体目标》后?/p>

制定全球统一?/p>

5G

标准已成为业界共同的呼声,按照之前公布的路线图,

ITU

?/p>

2016

年重点开?/p>

5G

技术性能需求和评估方法研究?/p>

2017

年正式启?/p>

5G

技术候选方案征集?/p>

 

在国内,华为、中兴、爱立信、诺基亚和上海贝尔、大唐、英特尔等公司均参与?/p>

2016

年的

5G

技术研发试验第一阶段测试。为尽早实现

5G

商用,在

2017

年,运营商、设备商,及相关产业链应

结合

5G

研发试验第一阶段测试结果,对

5G

关键技术进行突破?/p>

 

大规模天线:四点问题亟需突破

 

大规模多天线技术(

Massive MIMO

)被认为?/p>

5G

的关键技术之一,是唯一可以十倍、百倍提

升系统容量的无线技术。相比于以前的单一天线?/p>

4G

广泛使用?/p>

4/8

天线系统,大规模多天线技?/p>

能够通过不同的维度(空域、时域、频域、极化域等)提升频谱利用效率和能量利用效率;多维天线

阵列可以自适应地调整各个天线阵子的相位和功率,显著提高

MIMO

系统的空间分辨率;多天线?/p>

子的动态组合,天然可以应用波束赋形技术,从而让能量较小的波束集中在一块小型区域,将信号强

度集中于特定方向和特定用户群,因此可以显著降低小区内自干扰、邻区干扰等,提高用户信号载?/p>

比?/p>

 

结合

5G

技术试验的测试过程及结果,大规模多天线技术的以下关键问题仍需要进一步地研究?/p>

1

)信道估计及建模。天线阵子的动态组合及分配和用户终端的移动性,导致传统的发射端位置固定

的信道估计和建模方式不再适用?/p>

多个用户在地理位置的随机分布将显著影响天线阵子的分配?/p>

基站

需要依赖信道的移动性和能量在空间的连续性尽快做出最优或者较优的信道估计?/p>

信道能量在空间的

分布不均匀?/p>

不同的散射体和反射体的回波只对不同的天线阵子可见?/p>

意味着信道的相关性将难以?/p>

测,衰落将呈现非静态特征?/p>

2

)导频污染,上行信道估计容易被相邻小区的非正交序列干扰,基于

受污染的信道估计的下行链路波束赋形将会对使用同一个导频序列的终端造成持续的定向干扰,

从?

Ͼλ
新建
上传
首页
助手
最?/div>
资料?/div>
工具

?/p>

2015

?/p>

ITU

发布白皮书?/p>

IMT

愿景?/p>

2020

年及之后

IMT

未来发展的框架和总体目标》后?/p>

制定全球统一?/p>

5G

标准已成为业界共同的呼声,按照之前公布的路线图,

ITU

?/p>

2016

年重点开?/p>

5G

技术性能需求和评估方法研究?/p>

2017

年正式启?/p>

5G

技术候选方案征集?/p>

 

在国内,华为、中兴、爱立信、诺基亚和上海贝尔、大唐、英特尔等公司均参与?/p>

2016

年的

5G

技术研发试验第一阶段测试。为尽早实现

5G

商用,在

2017

年,运营商、设备商,及相关产业链应

结合

5G

研发试验第一阶段测试结果,对

5G

关键技术进行突破?/p>

 

大规模天线:四点问题亟需突破

 

大规模多天线技术(

Massive MIMO

)被认为?/p>

5G

的关键技术之一,是唯一可以十倍、百倍提

升系统容量的无线技术。相比于以前的单一天线?/p>

4G

广泛使用?/p>

4/8

天线系统,大规模多天线技?/p>

能够通过不同的维度(空域、时域、频域、极化域等)提升频谱利用效率和能量利用效率;多维天线

阵列可以自适应地调整各个天线阵子的相位和功率,显著提高

MIMO

系统的空间分辨率;多天线?/p>

子的动态组合,天然可以应用波束赋形技术,从而让能量较小的波束集中在一块小型区域,将信号强

度集中于特定方向和特定用户群,因此可以显著降低小区内自干扰、邻区干扰等,提高用户信号载?/p>

比?/p>

 

结合

5G

技术试验的测试过程及结果,大规模多天线技术的以下关键问题仍需要进一步地研究?/p>

1

)信道估计及建模。天线阵子的动态组合及分配和用户终端的移动性,导致传统的发射端位置固定

的信道估计和建模方式不再适用?/p>

多个用户在地理位置的随机分布将显著影响天线阵子的分配?/p>

基站

需要依赖信道的移动性和能量在空间的连续性尽快做出最优或者较优的信道估计?/p>

信道能量在空间的

分布不均匀?/p>

不同的散射体和反射体的回波只对不同的天线阵子可见?/p>

意味着信道的相关性将难以?/p>

测,衰落将呈现非静态特征?/p>

2

)导频污染,上行信道估计容易被相邻小区的非正交序列干扰,基于

受污染的信道估计的下行链路波束赋形将会对使用同一个导频序列的终端造成持续的定向干扰,

从?

">
新建
上传
首页
助手
最?/div>
资料?/div>
工具

?/p>

2015

?/p>

ITU

发布白皮书?/p>

IMT

愿景?/p>

2020

年及之后

IMT

未来发展的框架和总体目标》后?/p>

制定全球统一?/p>

5G

标准已成为业界共同的呼声,按照之前公布的路线图,

ITU

?/p>

2016

年重点开?/p>

5G

技术性能需求和评估方法研究?/p>

2017

年正式启?/p>

5G

技术候选方案征集?/p>

 

在国内,华为、中兴、爱立信、诺基亚和上海贝尔、大唐、英特尔等公司均参与?/p>

2016

年的

5G

技术研发试验第一阶段测试。为尽早实现

5G

商用,在

2017

年,运营商、设备商,及相关产业链应

结合

5G

研发试验第一阶段测试结果,对

5G

关键技术进行突破?/p>

 

大规模天线:四点问题亟需突破

 

大规模多天线技术(

Massive MIMO

)被认为?/p>

5G

的关键技术之一,是唯一可以十倍、百倍提

升系统容量的无线技术。相比于以前的单一天线?/p>

4G

广泛使用?/p>

4/8

天线系统,大规模多天线技?/p>

能够通过不同的维度(空域、时域、频域、极化域等)提升频谱利用效率和能量利用效率;多维天线

阵列可以自适应地调整各个天线阵子的相位和功率,显著提高

MIMO

系统的空间分辨率;多天线?/p>

子的动态组合,天然可以应用波束赋形技术,从而让能量较小的波束集中在一块小型区域,将信号强

度集中于特定方向和特定用户群,因此可以显著降低小区内自干扰、邻区干扰等,提高用户信号载?/p>

比?/p>

 

结合

5G

技术试验的测试过程及结果,大规模多天线技术的以下关键问题仍需要进一步地研究?/p>

1

)信道估计及建模。天线阵子的动态组合及分配和用户终端的移动性,导致传统的发射端位置固定

的信道估计和建模方式不再适用?/p>

多个用户在地理位置的随机分布将显著影响天线阵子的分配?/p>

基站

需要依赖信道的移动性和能量在空间的连续性尽快做出最优或者较优的信道估计?/p>

信道能量在空间的

分布不均匀?/p>

不同的散射体和反射体的回波只对不同的天线阵子可见?/p>

意味着信道的相关性将难以?/p>

测,衰落将呈现非静态特征?/p>

2

)导频污染,上行信道估计容易被相邻小区的非正交序列干扰,基于

受污染的信道估计的下行链路波束赋形将会对使用同一个导频序列的终端造成持续的定向干扰,

从?

Ͼλ">
Ͼλ
Ŀ

5G八大关键技术走?- 百度文库
新建
上传
首页
助手
最?/div>
资料?/div>
工具

?/p>

2015

?/p>

ITU

发布白皮书?/p>

IMT

愿景?/p>

2020

年及之后

IMT

未来发展的框架和总体目标》后?/p>

制定全球统一?/p>

5G

标准已成为业界共同的呼声,按照之前公布的路线图,

ITU

?/p>

2016

年重点开?/p>

5G

技术性能需求和评估方法研究?/p>

2017

年正式启?/p>

5G

技术候选方案征集?/p>

 

在国内,华为、中兴、爱立信、诺基亚和上海贝尔、大唐、英特尔等公司均参与?/p>

2016

年的

5G

技术研发试验第一阶段测试。为尽早实现

5G

商用,在

2017

年,运营商、设备商,及相关产业链应

结合

5G

研发试验第一阶段测试结果,对

5G

关键技术进行突破?/p>

 

大规模天线:四点问题亟需突破

 

大规模多天线技术(

Massive MIMO

)被认为?/p>

5G

的关键技术之一,是唯一可以十倍、百倍提

升系统容量的无线技术。相比于以前的单一天线?/p>

4G

广泛使用?/p>

4/8

天线系统,大规模多天线技?/p>

能够通过不同的维度(空域、时域、频域、极化域等)提升频谱利用效率和能量利用效率;多维天线

阵列可以自适应地调整各个天线阵子的相位和功率,显著提高

MIMO

系统的空间分辨率;多天线?/p>

子的动态组合,天然可以应用波束赋形技术,从而让能量较小的波束集中在一块小型区域,将信号强

度集中于特定方向和特定用户群,因此可以显著降低小区内自干扰、邻区干扰等,提高用户信号载?/p>

比?/p>

 

结合

5G

技术试验的测试过程及结果,大规模多天线技术的以下关键问题仍需要进一步地研究?/p>

1

)信道估计及建模。天线阵子的动态组合及分配和用户终端的移动性,导致传统的发射端位置固定

的信道估计和建模方式不再适用?/p>

多个用户在地理位置的随机分布将显著影响天线阵子的分配?/p>

基站

需要依赖信道的移动性和能量在空间的连续性尽快做出最优或者较优的信道估计?/p>

信道能量在空间的

分布不均匀?/p>

不同的散射体和反射体的回波只对不同的天线阵子可见?/p>

意味着信道的相关性将难以?/p>

测,衰落将呈现非静态特征?/p>

2

)导频污染,上行信道估计容易被相邻小区的非正交序列干扰,基于

受污染的信道估计的下行链路波束赋形将会对使用同一个导频序列的终端造成持续的定向干扰,

从?



ļ׺.doc޸Ϊ.docĶ

  • 5G˴ؼ
  • ҵλԱϱʵʩϸ.docx
  • Fluent
  • 6.3ͬͻȻ·̼·
  • ʦ꼶ϲѧ пѧϰר2θʽ ĩϰ
  • 2017ȫ1߿⼰
  • ŴĻɺͰŴ-߿ָϰʱϰҵ
  • ͨԭʵ鱨
  • ΢۾ѧ½ϰ⼰3
  • 罻⼰

վ

԰ Ͼλ
ϵͷ779662525#qq.com(#滻Ϊ@)