于太阳光谱的百分之五十,平均吸收系数为500cm,在背面接触处的反射系数为0.8,电池的厚度为10?m。
7-10.考虑一个硅PN结太阳电池,其面积为2cm。若太阳电池掺杂为
1619?3Na?1.7?10cm?3N,d??510cm,且已知?n?10?s,?p?0.5?s,
2?1Dn?9.3cm2/s,Dp?2.5cm2/s及IL?95mA。在室温下:
(1)计算并画出太阳电池的I-V特性曲线; (2)计算开路电压;
(3)确定太阳电池的最大输出功率; (4)计算机解(1)—(3)。
7-11.试列光电二极管和太阳电池的三个主要差别。 参考文献
1. P.Rappaport and J.J.Wysocki, The Photovoltaic Effect in GaAs, CdS and Other Compound Semiconductors, Acta Electron, 5:364(1961).
2. E.S.Rittner, An Improved Theory of the Silicon p-n Junction Solar Cell,
Int.Electron.Devices Meet., Washington, December 1976, Tech.Dig., pp.69-70. 3. M.Wolf, Limitations and Possibilities for Improvements of Photovoltaic Solar Energy
Converters, Proc.IRE, 48:1246(1960).
4. J.I.Pankove, “Optical Processes in Semiconductors,” Prentice-Hall, Englewood Cliffs,
N.J., 1971. 5. Hovel, H.J.:“Solar Cells, Semiconductors and Semimetals.” Vol.11.Academic, New
York, 1975.
6. Merrigan, J.A.:“Sunlight to Electricity,” MIT Press Cambridge.Mass.,
1975. H.C.Card and E.S.Yang, MIS-Schottky Theory under Conditions of Optical Carrier Generation in Solar Cells, Appl.Phys.Lett., 29:51(1976). 7. Carlson, D.E.“Amorphous Silicon Solar Cells.” IEEE Transactions on Electron Devices
ED-24(April 1977), pp.449-53.
8. Fonash, S.J.Solar Cell Device Physics.New York: Academic Press, 1981.
9. Kressel, H.Semiconductor Devices for Optical Communications: Topics in Applied
Physics. Vol.39.New York: Springer-Verlag, 1987. 10. MacMillan, H.F., H.C.Hamaker, G.F.Virshup, and J.G.Werthen.“Multijunction
11. 12. 13.
14.
15. Shur, M.Physics of Semiconductor Devices.Englewood Cliffs, NJ: Prentice Hall, 1990. 16. Singh, J.Semiconductor Devices: Basic Principles.New York: John Wiley and Sons,
2001.
17. Streetman, B.G.,and S.Banerjee.Solid State Electronic Devices.5th ed.Upper Saddle
River, NJ: Prentice-Hall, 2000.
18. Sze, S.M.Physics of Semiconductor Devices.2nd ed.New York: Wiley, 1981. 19. Sze, S.M.Semiconductor Devices: Physics and Technology. New York: Wiley, 1985. 20. Wang, S.Fundamentals of Semiconductor Theory and Device Physics.Englewood Cliffs,
NJ: Prentice Hall, 1989.
21. Wilson, J., and J.F.B.Hawkes.Optoelectronics: An Introduction.Englewood Cliffs,
NJ: Prentice Hall, 1983.
22. Wolfe, C.M., N.Holonyak, Jr., and G.E.Stillman.Physical Properties of
Semiconductors.Englewood Cliffs, NJ: Prentice Hall, 1989.
III-V Solar Cells: Recent and Projected Results.” Twentieth IEEE Photovoltaic Specialists Conference(1988), pp.48-54.
Madan, A.“Amorphous Silicon: From Promise to Practice.” IEEE Spectrum 23(September 1986), pp.38-43.
Pierret,R.F.Semiconductor Device Fundamentals.Reading,MA: Addison-Wesley,1996.
Roulston, D.J.An Introduction to the Physics of Semiconductor Devices.New York: Oxford University Press, 1999.
Roulston, D.J.Bipolar Semiconductor Devices.New York: McGraw-Hill, 1990
第八章习题
8-1.若在GaAsLED中?n可忽略。
8.2参照图8-13导出公式(8-3-11)
?p?30,Na?Nd,证明与电子电流比较,空穴扩散电流
?NtCp3P?E?Ea?r??1?exp??tNaCn2nKT??
???? ???18-3.一GaAs红外发光器具有下列器件参数,?i?80%,??10cm,xj?10?m
4?1 (1) 计算外量子效率;
(2) 若采用折射率为1.8的圆顶装环氧树脂进行LED封装,重复(1)。 8-4.GaAs中吸收系数的温度依赖关系可近似表示为???0exp(TT0式中?0为?外),
推至T?0K时的值,T0约为100 K。在300 K时,二极管的外量子效率为百分之五,其它参数为 xj?20?m,T?0.2,?(300K)?103cm?1 (1)计算在27 oC时的内量子效率;
(2)假设在这里所考虑的温度范围内量子效率为常数,求-23和77 oC时的外量子
效率。
8-5.计算下列情况下的亮度:
(1)红光GaP LED, 在10A/cm2时?ext?5%; (2) 绿光GaP ,在10A/cm时?ext?0.03%; (3) 绿光 GaAs0.6P0.4,在20A/cm假设
22?ext?0.15%。
AjAS?1。
8-6.估算书中叙述的红光 GaP二极管施主-受主间距的范围。 参考文献
1. 爱德华·S·杨.半导体器件物理基础.卢纪译.北京:人民教育出版社,1981
2. Bergh, A., and P.Dean: Light-emitting Diodes, Proc.IEEE.60:156-223(February
1972). A.Bergh and P.Dean, Light-emitting Diodes, Proc.IEEE, 60:156(1972). 3. Kano, K.Semiconductor Devices.Upper Saddle River, NJ: Prentice Hall, 1998.
4. Kressel, H.Semiconductor Devices for Optical Communications: Topics in Applied
Physics.Vol.39.New York: Springer-Verlag, 1987. 5. MacMillan, H.F., H.C. Hamaker, G.F.Virshup, and J.G.Werthen.“Multijunction
III-V Solar Cells: Recent and Projected Results.” Twentieth IEEE Photovoltaic Specialists Conference (1988), pp.48-54.
6. 王家骅,李长健,牛文成. 半导体器件物理.北京:科学出版社,1983
7. Pankove, J.I.Optical Processes in Semiconductors.New York: Dover Publications,
1971.
8. Pierret, R.F.semiconductor Device Fundamentals. Reading, MA: Addison-Wesley
Publishing Co., 1996.
9. Roulston, D.J.An Introduction to the Physics of Semiconductor Devices.New York:
Oxford University Press, 1999.
10. Shur, M.Introduction to Electronic Devices.New York: John Wiley and Sons, 1996. 11. Shur, M.Physics of Semiconductor Devices.Englewood Cliffs, NJ: Prentice Hall, 1990. 12. Singh, J.Semiconductor Devices: Basic Principles.New York: John Wiley and Sons,
2001.
13. Streetman, B.G., and S.Banerjee.Solid State Electronic Devices.5th ed.Upper Saddle
River, NJ: Prentice-Hall, 2000.
14. Sze, S.M.Physics of Semiconductor Devices.2nd ed.New York: Wiley, 1981. 15. Sze, S.M.Semiconductor Devices: Physics and Technology.New York: Wiley, 1985. 16. Wang, S.Fundamentals of Semiconductor Theory and Device Physics.Englewood Cliffs,
NJ: Prentice Hall, 1989. 17. Wilson, J., and J.F.B.Hawkes.Optoelectronics: An Introduction.Englewood Cliffs,
NJ: Prentice Hall, 1983.
18. Wolfe, C.M, N.Holonyak, Jr., and G.E.Stillman.Physical Properties of
Semiconductors.Englewood Cliffs, NJ: Prentice Hall, 1989.
第十章习题
10-1.证明公式(10-7)和(10-8)。 10-2.证明公式(10-12)。
10-3.一MOS电容器有下列参数:衬底Na?1015cm?3,VFB?2V,x0?100nm,电极
面积10×20μm。计算: (1)氧化层电容;
(2)VG?10V时的表面势; (3)在(2)的条件下的耗尽层深度; (4)耗尽层电荷。
10-4(1)计算在VG?10V,Qsig=0时,习题10-3中MOS电容器的衬底和电极之间的电
容CGS;
2
(2)有一信号电荷束注入到势阱中,测得CGS为(1)中 求得的数值的两倍,求注入的电子总数和电子密度。
10-5一CCD制造在Na?2?1014cm?3的P型衬底上,氧化层厚度为150nm,电极面积
为10?20?m:
(1)假设VFB?0,Qsig?0,计算分别偏置在VG?10V和20V的两邻近电极表面势和耗尽层深度;
(2)在把10个电子引进单元之后重复(1); (3)试草绘(2)的势阱图。
10-6(1)若电极间距为3?m,计算习题10-5(1)中电极边界上的边缘电场;
(2)假设在电荷转移之前,有10个电子均匀分布在VG?10V的一势阱中,估算一下通过边缘场电流使全部电子转移到VG?20V的邻近势阱所需的时间。 参考文献
1.G.F.Amelio,W.J.Bertram,Jr.andM.F.Tompsett.charge Coupled Imaging Devices,Design considerations.IEEE Trans-Elecron.Devices,ED 18:986(1971). 2.黄昆,韩汝琦.半导体物理基础.科学出版社,1979.
3.J.E.Carnes,W.E.Kosoncky,andE.G. Ramberg.Drift-aiding Fields in Charge-coupled devices,IEEE J. Solid-State Circuits,SC-6:322(1971).
4.W.J.Bertram et al.,A Three-Level Metallization Three=Phase CCD.IEEE Trans.Electron. Devices, ED-21:758(1974).
5.C.K.Kim.Design and Operation of Buried Channel Charge Coupled Devices,CCD Appl.Conf. Proc. Nan.Electron .Lab.,San Digeo,Calif.,Semptember 1973.
6.F.I.J.Sanger, Intergrated MOS and Bipolar Analog Delay Line Using Bucket-Brigate Capacitor storge. IEEE Solid-State circuits Conf.,1970,Dig.,p.74.
7.C.H..Sequin and M.F.Tompsett. Charge Transfer Devices.Academic,New york,1975.
66