使用sas进行变量筛选模型诊断多元线性回归分析

使用SAS进行变量筛选、模型诊断、多元线性回归分析

在其他地方看到的帖子,自己动手做了实验并结合自己的理解做了修订

第一节 多元线性回归分析的概述

回归分析中所涉及的变量常分为自变量与因变量。当因变量是非时间的连续性变量(自变量可包括连续性的和离散性的)时,欲研究变量之间的依存关系,多元线性回归分析是一个有力的研究工具。

多元回归分析的任务就是用数理统计方法估计出各回归参数的值及其标准误差;对各回归参数和整个回归方程作假设检验;对各回归变量(即自变量)的作用大小作出评价;并利用已求得的回归方程对因变量进行预测、对自变量进行控制等等。

值得注意的是∶一般认为标准化回归系数的绝对值越大,所对应的自变量对因变量的影响也就越大。但是,当自变量

彼此相关时,回归系数受模型中其他自变量的影响,若遇到这种情况,解释标准化回归系数时必须采取谨慎的态度。当然,更为妥善的办法是通过回归诊断(The Diagnosis of

Regression),了解哪些自变量之间有严重的多重共线性(Multicoll-inearity),从而,舍去其中作用较小的变量,使保留下来的所有自变量之间尽可能互相独立。此时,利用标准化回归系数作出解释,就更为合适了。

关于自变量为定性变量的数量化方法

设某定性变量有k个水平(如ABO血型系统有4个水平),若分别用1、2、…、k代表k个水平的取值,是不够合理的。因为这隐含着承认各等级之间的间隔是相等的,其实质是假定该因素的各水平对因变量的影响作用几乎是相同的。

比较妥当的做法是引入k-1个哑变量(Dummy Variables),每个哑变量取值为0或1。现以ABO血型系统为例,说明产生哑变量的具体方法。

当某人为A型血时,令X1=1、X2=X3=0;当某人为B型血时,令X2=1、X1=X3=0;当某人为AB型血时,令X3=1、

X1=X2=0;当某人为O型血时,令X1=X2=X3=0。

这样,当其他自变量取特定值时,X1的回归系数b1度量了E(Y/A型血)-E(Y/O型血)的效应;

X2的回归系数b2度量了E(Y/B型血)-E(Y/O型血)的效应;

X3的回归系数b3度量了E(Y/AB型血)-E(Y/O型血)的效应。相对于O型血来说,b1、b2、b3之间的差别就较客观地反映了A、B、AB型血之间的差别。

[说明] E(Y/*)代表在“*”所规定的条件下求出因变量Y的期望值(即理论均值)。

5.变量筛选

研究者根据专业知识和经验所选定的全部自变量并非对因变量都是有显著性影响的,故筛选变量是回归分析中不可回避的问题。然而,筛选变量的方法很多,详见本章第3节,这里先介绍最常用的一种变量筛选法──逐步筛选法。

模型中的变量从无到有,根据F统计量按SLENTRY的值(选变量进入方程的显著性水平)决定该变量是否入选;当模型选入变量后,再根据F统计量按SLSTAY的值(将方程

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4